Computer-assisted selective optimization of side-activities

webinar

Thu, 06 Jun 2019, 16:00 CEST (Berlin)

Julius Pollinger and Simone Schierle, Goethe University Frankfurt, Germany

Computer-assisted selective optimization of side-activities

The discovery of bioactive small molecules is an expensive and time consuming yet central task in drug discovery. A potentially superior way to identify new drug candidates is the selective optimization of side activities (SOSA), which employs known drugs for their side-activities as lead compounds, while diminishing their original activity. Virtually every small molecule drug interacts with more than one molecular target and, thus, has side-activities.

We have observed such side-activity for the cysteinyl leukotriene receptor 1 (CysLT1R) antagonist cinalukast on the nuclear peroxisome proliferator-activated receptor α (PPARα). We chose this synthetically challenging experimental drug to study whether the application of well-established computational optimization and ranking methods can help identify the most promising variations for SOSA and reduce the synthetic efforts needed in this lead optimization concept. We employed SeeSAR to visualize the critical parts for supportive or undesirable interactions with the nuclear receptor. In a proof-of-concept study, we confirmed the suitability of the HYDE ranking for the task of compound prioritization concerning potency on PPARα and screened an automatically generated virtual library of approximately 8000 close cinalukast analogues using a self-designed KNIME® workflow with FlexX and HYDE. The top-ranking molecules from this first aspect of SOSA were then computationally studied for CysLT1R antagonism using a random forest model trained on fingerprint representations of known CysLT1R antagonists. A computationally favoured cinalukast analogue was synthesized and its in vitro profiling confirmed the predicted activity shift towards higher activation efficacy on PPARα and markedly improved selectivity over CysLT1R compared to the lead compound.

Current news

"A Gaze into Chemical Space" Series
April 16, 2024 11:26 CEST
Introducing our latest series, “A Gaze into Chemical Space,” where we explore the expansive realms of combinatorial compound collections. Our aim in this exercise is to uncover similar compounds of potential and approved drugs using various methods. Typically, several synthesis steps are required to get to a compound with favorable...
Read on
Behind the Scenes of Enamine's REAL Space
April 15, 2024 16:43 CEST
Since its launch in 2018, Enamine’s REAL Space has made a significant impact in revolutionizing the landscape of compound collections. The initial version contained approximately 650 million compounds, establishing itself as one of the expansive catalogs of commercially available molecules for drug discovery. Notably, the first release rivaled even the...
Read on
category
Challenge
Martin Schwalm Emerges as Winner of Scientific Challenge Spring 2023
March 15, 2024 14:44 CET
The Scientific Challenge Spring 2023 comes to a conclusion: Martin Schwalm from the University of Frankfurt wins with his project “Identifying Binders to Hijack the Autophagy System for Targeted Protein Degradation”! The study aimed to identify binders for the LC3A protein’s hydrophobic binding site, a crucial target for drug discovery...
Read on