The Exciting Story of Covalent Reversible Inhibition of Rhodesain, a Key Player in African Sleeping Sickness

webinar

Tue, 16 Nov 2021, 15:00 CET (Berlin)

Prof. Dr. Tanja Schirmeister, University of Mainz; Prof. Dr. Bernd Engels, University of Würzburg; Dr. Christian Kersten, University of Mainz; Natalie Fuchs, University of Mainz

The Exciting Story of Covalent Reversible Inhibition of Rhodesain, a Key Player in African Sleeping Sickness

Human African Trypanosomiasis (HAT, African Sleeping Sickness) is a fatal, neglected tropical disease caused by the parasites Trypanosoma brucei. Most available drugs for treatment of the disease lack efficiency and have severe side effects. α-halovinylsulfones as covalent reversible inhibitors of the parasitic cysteine protease “rhodesain” have proven to be promising novel drug candidates.
Here, the team around Tanja focused on optimizing α-fluorovinylsulfones and -sulfonates for rhodesain inhibition using molecular modeling approaches. This resulted in highly potent and selective inhibitors with single-digit nanomolar affinity. The researchers further investigated the binding modes experimentally via MS experiments, indicating that the compounds are covalent-reversible, slow-tight binders. The different inhibition mechanisms of fluorinated and non-fluorinated compounds (reversible vs. irreversible) were investigated by QM/MM calculations and MD simulations.
In vivo studies revealed a favorable metabolism and biodistribution compared to non-optimized rhodesain inhibitors. Furthermore, they observed an anti-trypanosomal activity in the nanomolar range for inhibitors with an N-terminal 2,3-dihydrobenzo[b][1,4]dioxine group and a 4-Me-Phe residue in P2.

 

 

Current news

"A Gaze into Chemical Space" Series
April 16, 2024 11:26 CEST
Introducing our latest series, “A Gaze into Chemical Space,” where we explore the expansive realms of combinatorial compound collections. Our aim in this exercise is to uncover similar compounds of potential and approved drugs using various methods. Typically, several synthesis steps are required to get to a compound with favorable...
Read on
Behind the Scenes of Enamine's REAL Space
April 15, 2024 16:43 CEST
Since its launch in 2018, Enamine’s REAL Space has made a significant impact in revolutionizing the landscape of compound collections. The initial version contained approximately 650 million compounds, establishing itself as one of the expansive catalogs of commercially available molecules for drug discovery. Notably, the first release rivaled even the...
Read on
category
Challenge
Martin Schwalm Emerges as Winner of Scientific Challenge Spring 2023
March 15, 2024 14:44 CET
The Scientific Challenge Spring 2023 comes to a conclusion: Martin Schwalm from the University of Frankfurt wins with his project “Identifying Binders to Hijack the Autophagy System for Targeted Protein Degradation”! The study aimed to identify binders for the LC3A protein’s hydrophobic binding site, a crucial target for drug discovery...
Read on