Crystallographic Fragment Screening at BESSY II — From Hits to Improved Binders

webinar

Thu, 24 Nov 2022, 16:00 CET (Berlin)

Dr. Jan Wollenhaupt, Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography (HZB-MX), Germany

Crystallographic Fragment Screening at BESSY II — From Hits to Improved Binders

When fragment screening is carried out using X-ray crystallography it reveals the 3D-position of the fragment hits inside the protein’s binding site. This additional information of the fragment’s position is highly valuable for further improvement of the usual “low-affinity fragments” to create binders of higher potency. By combining fragment-based and structure-based drug discovery, binders of higher potency can be achieved.

At the macromolecular crystallography (MX) beamlines at BESSY II, a dedicated workflow was established for the user community. It fosters efficient and convenient screening[1] and is based on several unique developments: First, the very diverse F2X fragment libraries that deliver high hit rates, mostly in the range of 20-25%.[2,3] Second, tools like the EasyAccess Frame ensure fast and comfortable crystal soaking and harvesting.[4] After data collection at the state-of-the-art MX beamlines at BESSY II, data analysis is highly automated and conveniently interfaced via the FragMAXapp setup at HZB.[5] FragMAXapp enables automatic data treatment using a number of pipelines, including the HZB-developments XDSAPP for automatic processing and fspipeline for automatic refinement.[6,7] As a final step, improved methodologies like PanDDA are applied for the best identification of the fragments in the electron density.[8]

Beyond efficient MX-based screening, HZB also offers methods of hit evolution to higher potency via fragment growing. In HZB’s Frag4Lead workflow the 3D-information of the crystallographic hits are used as an anchor for virtual pre-screening of suitable candidates from chemical catalogs.[9] This way, the first fragment growing step can be achieved without the need for custom synthesis and minimal virtual-screening expertise. Jan and team successfully employed Frag4Lead to advance fragment hits to single-digit micromolar binders in one step and shall report about this.

[1]    Wollenhaupt, J. et al. J. Vis. Exp. 2021, 62208 (2021).

[2]    Wollenhaupt, J. et al.. Structure 28, 694-706.e5 (2020).

[3]    Barthel, T. et al. J. Med. Chem. (2022).

[4]    Barthel, T. et al. J. Appl. Cryst. 54, 376–382 (2021).

[5]    Lima, G. M. A. et al. Acta Cryst. D 77, 799–808 (2021).

[6]    Sparta, K. et al. J. Appl. Cryst. 49, 1085-1092 (2016).

[7]    Schiebel, J. et al. Structure 24, 1398–1409 (2016).

[8]    Pearce, N. M., et al. Nature Comm. 8, 15123 (2017).

[9]    Metz, A. et al. Acta Cryst. D 77, 1168–1182 (2021).

Current news

category
Software
Molecular Superpositioning with the Similarity Scanner
October 14, 2022 11:02 CEST
Molecular superpositioning of small molecules is one of the pillars of ligand-based drug discovery (LBDD). In LBDD cheminformatics methods are applied to 3D align a molecule set with a query structure based on tool criteria, e.g., motifs, interaction features, and substructures. Subsequently, the 3D alignment can be exploited to investigate...
Read on
Freedom Space by Chemspace — a Source for Accessible Ideation
October 13, 2022 14:11 CEST
The Freedom Space received an update by Chemspace to include the latest available in-stock building blocks. The Chemical Space is based on six validated and robust chemical reactions with high synthesis success rate which can be performed in almost every synthetic lab. The reactions include acylation, reductive amination, arylation, and...
Read on
category
Challenge
Winner of Fall 2021 Scientific Challenge: Aaron Kuriakose Prakash with Covalent Tuberculosis Drugs
September 20, 2022 12:56 CEST
We are excited to announce the winner of the Fall 2021 Scientific Challenge: Aaron Kuriakose Prakash from the Madras Christian College (Chennai, India)! In the past twelve months he used the covalent docking feature of SeeSAR to screen for potential drug candidates to treat tuberculosis infections. He got the best...
Read on