Targeting m-RNA conformational ensemble for developing therapeutics for SMA

webinar

Tue, 28 May 2019, 16:00 CEST (Berlin)

Prof. Dr. Leonardo Scapozza, Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Switzerland

Targeting m-RNA conformational ensemble for developing therapeutics for SMA

Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against Spinal Muscular Atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5′ splicing site of E7. A small-molecule TSL2-binding compound, homocarbonyltopsentin (PK4C9), was identified that increases E7 splicing to therapeutic levels and rescues downstream molecular alterations in SMA cells. High-resolution NMR combined with molecular modelling revealed that PK4C9 binds to pentaloop conformations of TSL2 and promotes a shift to triloop conformations that display enhanced E7 splicing. Collectively, our study validates TSL2 as a target for small-molecule drug discovery in SMA, identifies a novel mechanism of action for an E7 splicing modifier, and sets a precedent for other splicing-mediated diseases where RNA structure could be similarly targeted.

Current news

"A Gaze into Chemical Space" Series
April 16, 2024 11:26 CEST
Introducing our latest series, “A Gaze into Chemical Space,” where we explore the expansive realms of combinatorial compound collections. Our aim in this exercise is to uncover similar compounds of potential and approved drugs using various methods. Typically, several synthesis steps are required to get to a compound with favorable...
Read on
Behind the Scenes of Enamine's REAL Space
April 15, 2024 16:43 CEST
Since its launch in 2018, Enamine’s REAL Space has made a significant impact in revolutionizing the landscape of compound collections. The initial version contained approximately 650 million compounds, establishing itself as one of the expansive catalogs of commercially available molecules for drug discovery. Notably, the first release rivaled even the...
Read on
category
Challenge
Martin Schwalm Emerges as Winner of Scientific Challenge Spring 2023
March 15, 2024 14:44 CET
The Scientific Challenge Spring 2023 comes to a conclusion: Martin Schwalm from the University of Frankfurt wins with his project “Identifying Binders to Hijack the Autophagy System for Targeted Protein Degradation”! The study aimed to identify binders for the LC3A protein’s hydrophobic binding site, a crucial target for drug discovery...
Read on