
CoLibri Commandline Documentation
8.0

Sascha Jung, Raphael Klein & Marcus Gastreich

March 6, 2023

©2023 BioSolveIT. All rights reserved.

Contents
1 Introduction 2

2 Technical Prerequisites 4

3 The ReactionSynthesizer 5
3.1 General . 5
3.2 Program Options . 6
3.3 Example 1: Generating a single space for a reaction 8
3.4 Example 2: Enumerating product molecules for a reaction 10
3.5 Example 3: Transforming molecules for FastGrow databases or covalent

docking . 11
3.6 Example 4: Removing protecting groups from product molecules 12
3.7 Example 5: Debugging reaction definitions 13

4 The FragspaceMerger 14
4.1 General . 14
4.2 Program Options . 15
4.3 Example: Merging two single reaction spaces 15

5 The SpaceLightDBCreator 17
5.1 General . 17
5.2 Program Options . 17
5.3 Example: Creating a topological fragment space database 19

6 General Options 21

7 Further Reading, References 22

1 Introduction

All links, references, table of contents lines etc. in this pdf are clickable.

Please note that this toolkit is a commandline package.

CoLibri is a toolkit containing three separate commandline (CLI) tools (React-
ionSynthesizer, FragspaceMerger and SpaceLightDBCreator) to create combi-
natorial chemical spaces (”fragment spaces” or ”topological fragment spaces”)
of multi-billion size and beyond. As input, the tools take building blocks and
a formalized reaction definition (as .smirks or .rxn file). This input is trans-
formed into a highly efficient description of a chemical space (either based on
link compatibility or topology graphs, see below) that can then be searched
either with our CLI tools SpaceLight and FTrees or with our Chemical Space
Navigation Platform infiniSee. The spaces are encoded based on formalized
reactions containing reagents with Lego®-like linkers (Figure 1). This type of
spaces is the only way to access an immeasurably large pool of compounds
and find numerous synthesizable analogs. Therefore, CoLibri is a mandatory
toolkit to create your own corporate chemical spaces that can be searched
with various fingerprint descriptors (SpaceLight, Analog Hunter) or our Fea-
ture Tree descriptor (FTrees, Scaffold Hopper).

CoLibri contains three independent tools that let you

• build combinatorial spaces for SpaceLight (SpaceLightDBCreator)

• build combinatorial spaces for FTrees (ReactionSynthesizer and Fragspace-
Merger)

• enumerate up to 1 million product molecules per reaction

• generate fragments for FastGrow databases (for 3D growing)

• prepare compounds for covalent docking

To enable chemical space navigation at unparalleled speed on standard hard-
ware, we formalize reactions and encode them as pseudo-linking reactions.
There is a principal difference between ”classical” fragment spaces (FTrees spa-
ces) and ”topological” fragment space databases (”SpaceLight spaces”). For the
classical spaces, the compatibility of the fragments is encoded for every reac-
tion, e.g., one sub-space is created per reaction. Multiple sub-spaces are finally
merged into the final, ”parent” chemical space containing the overall fragment
compatibilities and all fragments (Figure 1, classical space). For SpaceLight,
one so-called ”topology graph” is generated for every reaction and stored in a

2

Figure 1: Example reaction (click chemistry and amide coupling) and building blocks serving
as input for the CoLibri toolkit.

database. Every node of this topology graph contains formalized, virtual build-
ing blocks, or as we sometimes call them, ”reaction-fate foreseeing” fragments
(Figure 1, topological fragment space). Despite being processed in different
ways, the input for both classical spaces and topological spaces is the same
(same building blocks and reaction definitions, see Figure 1).

3

2 Technical Prerequisites

CoLibri contains three commandline tools (ReactionSynthesizer, Fragspace-
Merger and SpacelightDBCreator). The tools need the following to run:

• TheCoLibri package (from https://biosolveit.de/download); depend-
ing on your operating system, some librariesmay have to be installed (get
in touch with us if that is the case: mailto:support@biosolveit.com;
and please mention any errors/warnings that you see)

• A shell (Linux/Unix) or a terminal (macos), or a commandline environ-
ment (Windows; e.g.: cmd.exe)

• A valid license (from license@biosolveit.com)

The license setup instructions will come with the license that we will send out
— or has already been sent out to you.

A “test license” that you can request online and that is sent to you instanta-
neously can simply be placed next to the respective executable (e.g. reac-
tion_synthesizer.exe, reaction_synthesizer, or ReactionSynthesizer— depend-
ing on your operating system). For macos please read on…

macos Specialties On macos, the executable will typically reside inside the *.app
package, e.g.:

/Applications/ReactionSynthesizer.app/Contents/MacOS/ReactionSynthesizer

To place the short term test license there, you will have to go into the *.app package
using a right mouse click on *.app in the Finder, and click on “Show package contents”.
In there, you will see the Contents/ subfolder, in there the MacOS subfolder, and in
there, the respective executable. If you are about to use the test license, place is right
there, next to the executable. A longer term license will be handled separately, we will
tell you how when we send that very license.

When you call a tool for the first time, go to the Finder, and navigate to the Applications
folder. Do a right(!) click on respective *.app, and — if applicable — confirm that you
want to open the program. It will flash up once, and you are good to go at the terminal
prompt from there on.

4

https://biosolveit.de/download
mailto:support@biosolveit.com

3 The ReactionSynthesizer

The ReactionSynthesizer generates a ”space” for a single reaction (so called
sub-space or single space) and/or enumerates up to 1 million product mole-
cules for that reaction (see Section 3.3 and 3.4). It can additionally be used to
prepare compounds for FastGrow databases or covalent docking (see Section
3.5).

3.1 General

An overview of all commandline options is available by calling the Reaction-
Synthesizer executable with --help. You should see the following output with
short descriptions for every option:

./reaction_synthesizer --help

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are *.rxn and

*.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom labels are

used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported file

types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-path] arg Path for the output directory in which generated spaces, enumerated

products and logs are written.
--information arg (=1) Information level in the stats.log output file.

1: Essential information
2: Basic matching information
3: Full matching information

--check-reaction [=arg(=1)] Checks the reaction definition for potential failures. If this check
is activated, the program stops right after the check, no further
steps such as space generation or product enumeration is performed.

-e [--enumerate] arg Products are enumerated if a molecule file name is provided.
Supported file types are *.mol2, *.sdf, *.smi and *.smiles. The
output file is stored under the output-path.

-c [--random-products] arg Enumerate as many random products as specified. Performs full
enumeration (limited to 1.000.000) when set to 0.
Note: Requires '--enumerate'

-g [--generate-fragspace] [=arg(=1)]
Generate a fragment space for the reaction.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default is to

use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

5

Please note that the abbreviated, one-letter options are preceded with one
dash - whereas the longer, named options are preceded with two dashes: --.
If an option needs an argument (arg), you can include or omit the equals sign.
Certainly, also adapt the commandline usage, depending on the operating sys-
tem and commandline environment you use.

3.2 Program Options

In this section the individual parameters are described in more detail. The Re-
actionSynthesizer generates a single space (sub-space, ”per-reaction” space)
for one specific reaction. Multiple single spaces can then be merged into an
overall ”parent” space containing all the fragments from various reactions with
the FragspaceMerger (see Section 4). Therefore, the minimal input required
to run the ReactionSynthesizer is a reaction definition file containing a formal-
ized reaction (.smirks or .rxn format) and an input file containing appropriate
building blocks that can be processed with that very reaction. A minimal call
to generate a single space for a particular reaction then may look like the fol-
lowing:

./reaction_synthesizer -r <path/reaction.smirks> -i <path/building_blocks.sdf>
-o <path/to/output/directory> -g

The parameters in detail Description of the program options in detail.

-r [--reaction] Specify the input reaction file. The file must contain the for-
malized reaction either in .smirks or .rxn format. More information on how
to properly formulate a reaction can be found on our website.[2] SMARTS-
based reaction definitions (.smirks) can be intuitively generated with the tool
SMARTSEditor.[1] Additional information and a SMARTSEditor tutorial are avail-
able on our website.[3] A SMARTS-based reaction pattern can also be visual-
ized on the SMARTS.PLUSwebserver of the Center for Bioinformatics Hamburg
(ZBH): https://smarts.plus/

-s [--sma] Specify a SMARTS functional group definition file. The file is only
needed if atom labels are used in .rxn reaction definitions. A pre-compiled file
(named FunctionalGroupLabel.txt) with common functional groups can be

6

https://smarts.plus/

found in the example folder inside the ReactionSynthesizer directory. Extend
this file depending on your needs.

-i [--input] Specify an input file containing building blocks matching with
the reaction given via the -r option. Supported file types are .smi, .smiles,
.mol, .mol2 and .sdf. The file will be scanned for matching building blocks for
all reagents specified in the reaction. Only compatible building blocks will be
read from the file, incompatible ones are skipped. Please note: You can spec-
ify multiple input files simultaneously by using the -i option multiple times in
a row, e.g.
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

[--input-reagent-1] Input molecule files explicitly used for reagent 1. If pro-
vided, this file should contain only building blockswhichmatch the first reagent
specified in the reaction given with -r option. Supported file types are .smi,
.smiles, .mol, .mol2 and .sdf.

[--input-reagent-2] Input molecule files explicitly used for reagent 2. If pro-
vided, this file should contain only building blocks which match the second
reagent specified in the reaction given with -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf.

[--input-reagent-3] Input molecule files explicitly used for reagent 3. If
provided, this file should contain only building blocks which match the third
reagent specified in the reaction given with -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf.

[--input-reagent-4] Input molecule files explicitly used for reagent 4. If pro-
vided, this file should contain only building blocks which match the fourth
reagent specified in the reaction given with -r option. Supported file types
are .smi, .smiles, .mol, .mol2 and .sdf.

-p [--protecting-groups] With this option you can specify a file containing
SMARTS definitions for protecting groups. The file should be a simple text file
containing line-separated SMARTS definitions. If you provide such a file, the
specified protecting groups present in the input building blocks will be clipped
and removed from the generated fragments. Consequently, the protecting
group is also not present in the product molecules. An example file (named
ProtectingGroups.txt) with most commonly used protecting groups can be
found in the example folder in the ReactionSynthesizer directory. Extend this
file depending on your needs. For an example usage, see Section 3.6.

-o [--output-path] Specify the path to an output directory towhich the space
files (fragment-space-file, fragment-link-file and fragment-files, only if -g option
is specified), enumerated product molecule file (only if -e option is specified)
and the log file (stats.log) are written. Please note: if the directory does not

7

already exist, it will be created.

--information (arg) Information level for the stats.log output file. Takes a
number (1-3) as argument:

1 Essential information
2 Basic matching information
3 Full matching information

--check-reaction If specified, the reaction given with the -r option is checked
for potential errors. If this option is specified, the program terminates right af-
ter the check. No space generation or product enumeration will be executed
even if the reaction is valid and the -g and -e options are specified. Found
errors will be written to a file named validation.log in the output directory.
Please note: The log file is only generated if errors are found in the reaction
definition file, otherwise no log file will be written.
Example call:
./reaction_synthesizer -r reaction.rxn --check-reaction -o out_dir

-e [--enumerate] arg With this option you can enumerate all product mole-
cules (limited to 1 million compounds) which can be formed from the building
blocks with the specified reaction (-r option). Takes a file name as argument
(supported file types are .smi, .smiles, .mol, .mol2 and .sdf). Please note:
you need to only give a name for the file here (with suffix), no path is required.
The file will be written to the output directory specified with the -o option. See
Section 3.4 for an example.

-c [--random-products] arg Randomly enumerate the specified number of
products. Takes a number as argument. If set to 0, all possible product mo-
lecules will be enumerated (limited to 1 million molecules). Please note: re-
quires the -e option to be set. See Section 3.4 for an example.

-g [--generate-fragspace] Generates a fragment space for the reaction.
This will create a fragment-space-file (.fsf), a fragment-label-file (.flf) and
the corresponding fragment-files (.smi) in the directory specified with the -o
option. See Section 3.3 for an example. Please note: The number of fragment-
files varies depending on the reaction definition (see -r option).

3.3 Example 1: Generating a single space for a reaction

In the example folderwithin the ReactionSynthesizer directory you can find two
example reaction definition files (amidecoupling.smirks and suzuki.smirks)
and a file with suitable building blocks (building_blocks.smi). They cover two

8

Figure 2: Example of an amide reaction (top) and a Suzuki reaction (bottom) covered by
the example reaction definition files and example building blocks.

prominent examples of reactions used inMedicinal Chemistry: amide coupling
and Suzuki reaction (see Figure 2). More detailed information on how to prop-
erly formalize reactions for space generation can be found on our website.[2]
To get a first impression on how the ReactionSynthesizer works, simply gener-
ate a sub-space for the amide coupling reaction. Therefore, on the command-
line, navigate into the example folder and run the following:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_sub_space -g

The above call will create a new directory named amide_sub_space within the
example folder to which several output files are written. You can open the
output files with a text editor:

• fragspace_fragments_0.smi: fragment-file. Fragments generated from
the input building blocks for the first reagent (acid). Contains all acid
fragments with linkers.

• fragspace_fragments_1.smi: Fragments generated from the input build-
ing blocks for the second reagent (amine). Contains all amine fragments
with linkers.

• amidecoupling.flf: fragment-label-file. Contains information to which
reaction and to which reagent position the fragments belong.

9

• amidecoupling.fsf: fragment-space-file. Connects information on linker
compatibilities with the corresponding fragment-label-file and fragment-
files.

• stats.log: Contains statistics and details on the applied reaction and
mapping.

Re-run for the Suzuki reaction, this time with additional enumeration of all
product molecules:

../reaction_synthesizer -r suzuki.smirks -i building_blocks.smi
-o suzuki_sub_space -g -e suzuki_products.sdf

The output folder suzuki_sub_spacewill nowadditionally contain one file named
suzuki_products.sdf with all products that could be created from the input
building blocks.

3.4 Example 2: Enumerating product molecules for a reac-
tion

The ReactionSynthesizer can also be used to enumerate product molecules
from building blocks (see also Section 3.3). Simply use the amide coupling
reaction from Example 1 again:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products.sdf

This call will generate an output folder named amide_enum which contains two
files: amide_products.sdf containing all the product molecules that could be
constructed from suitable building blocks in the input file and the stats.log
file with matching information.
It is also possible to randomly enumerate only a specific number of product
molecules with the -c option:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products_random.sdf -c 2

The output SD file amide_products_random.sdf now contains only 2 randomly
enumerated product molecules.

10

Figure 3: Example of a reaction definition to transform compounds with a vinylsulfone
warhead into their protein-bound state. The transformed molecule contains a linker (R).

3.5 Example 3: Transformingmolecules for FastGrow data-
bases or covalent docking

You can generate input molecules for FastGrow databases or covalent docking
with the ReactionSynthesizer by formulating a transformation reaction, e.g. the
product molecules must contain a linker (Figure 3). This linker then can serve
as attachment point to a protein residue during covalent docking. The linker
compound can also be added to a FastGrow database. Compounds that do
not carry such a linker cannot be processed by FlexX/FastGrow/SeeSAR, they
need to be pre-processed as described in this section prior to using them for
covalent docking or growing.

On the command-line, navigate into the example folder within the Reaction-
Synthesizer directory. Open the file vinylsulfone_transform.rxnwith a chem-
ical drawing program (Figure 3). This reaction definition may serve as an ex-
ample for the transformation of a compound with a vinylsulfone warhead into
its protein bound state (Figure 3). The product contains a linker (R) which
may serve as the attachment point for a nucleophilic residue during covalent
docking. With this reaction definition, you can now prepare the compounds in
vinylsulfones.sdf for covalent docking:

../reaction_synthesizer -r vinylsulfon_transform.rxn -i vinylsulfones.smi
-o vs_transformed -e vs_transformed.sdf

The output SD file vs_transformed.sdf contains the transformed compounds.
You can directly use this file to perform covalent docking within SeeSAR or with
FlexX.

As a second example, you can transform somebuilding blockswith a carboxylic
acid as functional group to fragments suitable to be incorporated into Fast-
Grow databases:

11

Figure 4: Example of acids transformed to fragments with a linker. These fragments can
be directly incorporated into FastGrow databases.

../reaction_synthesizer -r acid_transform.rxn -i building_blocks.smi
-o fragments -e fastgrow_fragments.sdf

The file fastgrow_fragments.sdf contains the transformed acids with a linker
(see Figure 4) and can serve as an input file for the FastGrowDBCreator (for
more information visit https://www.biosolveit.de/products/#FastGrow).

3.6 Example 4: Removing protecting groups from product
molecules

You can remove protecting groups from product molecules. As an example
can serve the compound 1 in Figure 5 that has one Boc-protected amine and
one free primary amine group. This compound can react with its free amine
groupwith benzoic acid (2 in Figure 5) to forman amide. Again, on the command-
line, navigate into the example folder and execute the following two calls:

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_uncleaved -e boc_uncleaved.sdf

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_cleaved -e boc_cleaved.sdf -p ProtectingGroups.txt

12

https://www.biosolveit.de/products/#FastGrow

Figure 5: Example product molecule obtained from an amide coupling reaction. 3: without
protecting group removal, 4: with protecting group removal.

The above calls will generate the new folders boc_cleaved and boc_uncleaved
containing the files boc_cleaved.sdf and boc_uncleaved.sdf, respectively.
In Figure 5 the resulting enumerated product molecules are shown for both
cases. When using the -p argument with the file ProtectingGroups.txt, the
Boc group is removed and is not present in the final product (4).

3.7 Example 5: Debugging reaction definitions

The ReactionSynthesizer can be used to debug reaction definitions. Formal-
ized reaction definitions quickly get complex, so it is often a good idea to check
for potential errors or ambiguities before generating a space. The example
folder in the ReactionSynthesizer directory contains an example reaction def-
inition file named amidecoupling_error.smirks with a formal error. On the
command-line, navigate into the example folder and execute the following:

../reaction_synthesizer -r amidecoupling_error.smirks -o . --check-reaction

The above call will create a file named validation.log in the example folder
with informationwhy the reaction definition is not valid (Missingmapping Label
in product: 3). More on information on how to properly formalize reactions can
be found on our website.[2]

13

4 The FragspaceMerger

The FragspaceMerger is used to merge multiple single reaction spaces gen-
erated with the ReactionSynthesizer (see Section 3). The output is a mas-
ter space containing multiple reaction definitions along with all correspond-
ing fragments. The output comprises three files: the merged fragment_label
file (.flf), the merged fragment_space file (.fsf) and the fragment file (.smi).
Merging multiple single reaction space files results in unification of all involved
fragments into one file and enhances the encoding of the fragment compati-
bilities. This leads to faster runtimes in FTrees searches. Additionally, if you zip
the three merged files (e.g using 7zip) you have a sole chemical space file that
is readily available for infiniSee’s Scaffold Hopper, FTrees and SpaceMACS. You
can also re-name the .zip file to .space.

4.1 General

Anoverviewof all commandline options is available by calling fragspace_merger
with --help. You should see the following output with short descriptions for
every option:

./fragspace_merger --help

Program options:
-i [--input-fsf-paths] arg List of paths to the FSF files to merge.

Note: The .flf and fragment files specified in each FSF have to be
in the appropriate relative paths.
Note: Can't be used together with '--input-base-dir'.

-d [--input-base-dir] arg Base directory to search for fragment spaces.
Each sub-directory (within the base) must contain exactly one
'.fsf' and one '.flf' file plus all (at least one) corresponding fragment files.
Note: Can't be used together with '--input-fsf-paths'.

-o [--output-dir] arg Path for the output directory.
-f [--out-file-name] arg Output base file name (without suffix) for the merged flf, fsf

and molecule files.

General options:
-h [--help] Print this help message
--license-info Print license info
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

Please note that the abbreviated, one-letter options are preceded with one
dash - whereas the longer, named options are preceded with two dashes: --.
If an option needs an argument (arg), you can include or omit the equals sign.

14

Certainly, also adapt the commandline usage, depending on the operating sys-
tem and commandline environment you use.

4.2 Program Options

-i [--input-fsf-paths] (arg) Specify the path to an fsf file (a single space
.fsf file generated with the ReactionSynthesizer, see Section 3). Please note:
The corresponding .flf and fragspace_fragment files (.smi) must be located
in the same directory. You can specify multiple fsf files to bemerged at once by
using the option multiple times in a row. This option cannot be used together
with the -d option. See Section 4.3 for an example.

-d [--input-base-dir] (arg) Specify a base directory whose subdirecto-
ries should contain every single reaction space (see Section 3) in a separate
folder. Please note: The single space folders must contain the .fsf and .flf
file as well as all associated fragspace_fragment (.smi) files. Please note: This
is an alternative way to merge multiple single spaces. This option cannot be
used together with the -i option. See Section 4.3 for an example.

-o [--output-dir] (arg) Specify the path to the output directory to which
the merged .fsf, .flf and fragment file (.smi) is written. Please note: if the
directory does not already exist, it is created.

-f [--out-file-name] (arg) Specify an output base file name (without
suffix) to be used for the merged .flf, .fsf and fragment (.smi) file.

4.3 Example: Merging two single reaction spaces

You can find the two single spaces which are generated in Example 1 (see Sec-
tion 3.3) in the example folder underneath the FragspaceMerger folder. You
can now merge these into one ”parent” (master) space: On the commandline,
navigate into the example folder within the FragspaceMerger directory and
execute the following call:

../fragspace_merger -i amide_sub_space/amidecoupling.fsf -i suzuki_sub_space/suzuki.fsf
-o merged_space -f parent_space

Alternatively, you can also use the -d option to execute the same task:

../fragspace_merger -d . -o merged_space -f parent_space

15

The above calls will create the output folder merged_space which contains
the three files parent_space.fsf, parent_space.flf and parent_space.smi.
These files can now be used for Feature Tree searches (FTrees CLI tool or Scaf-
fold Hopper in infiniSee). You can also zip the three files and use it FTrees and
infiniSee (optionally re-name the .zip to .space). For more information on
FTrees visit:
https://www.biosolveit.de/products/#FTrees.
Please note that SpaceLight searches need a different file, as will be discussed
in Section 5.

16

https://www.biosolveit.de/products/#FTrees

5 The SpaceLightDBCreator

The SpaceLightDBCreator generates a topological fragment space which can
be searched with various fingerprint descriptors using SpaceLight (https://
www.biosolveit.de/products/#SpaceLight). Similar to the ReactionSynthe-
sizer (see Section 3), the SpaceLightDBCreator takes building blocks and reac-
tion definitions (.smirks or .rxn) as input. The output is a topological fragment
space database (.tfsdb) file. Therefore, you can use exactly the same input
to create both types of spaces, ”fragment spaces” (FTrees, infiniSee’s Scaffold
Hopper and SpaceMACS) and ”topological fragment spaces” (SpaceLight, in-
finiSee’s Analog Hunter).

5.1 General

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are

*.rxn and *.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom

labels are used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported

file types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-file] arg Topological fragment space file to be written.
-f [--insert-full-molecules] [=arg(=1)] (=0)

Insert molecules supplied by --input directly into the created
databse.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default

is to use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent] 1 [error]
2 [warning] 3 [workflow]
4 [steps]

5.2 Program Options

-r [--reaction] Specify the input reaction file. The file must contain the for-
malized reaction in .smirks or .rxn format. More information on how to prop-
erly formulate a reaction can be found on our website.[2] SMARTS-based reac-
tion definitions (.smirks) can be intuitively generatedwith the SMARTSEditor.[1]

17

https://www.biosolveit.de/products/#SpaceLight
https://www.biosolveit.de/products/#SpaceLight

Additional information and a SMARTSEditor tutorial is available on ourwebsite.[3]
Please note: This option takes one reaction at a time. Addingmore reactions to
a database will automatically happen with subsequent calls (see the example
in Section 5.3).

-s [--sma] Specify a SMARTS functional group definition file. The file is only
needed if atom labels are used in .rxn reaction definitions. A pre-compiled
file (named FunctionalGroupLabel.txt) with common functional groups can
be found in the example folder inside the SpaceLightDBCreator directory. You
may extend this file depending on your needs.

-i [--input] Specify an input file containing building blocks suitable to be
used with the reaction given via the -r option. Supported file types are .smi,
.smiles, .mol, .mol2 and .sdf. The file will be scanned for suitable building
blocks for all reagents specified in the reaction. Only suitable building blocks
will be read from the file, non-suitable ones are skipped. Please note: You can
specify multiple input files at once by using the -i option multiple times in a
row, e.g.
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

[--input-reagent-1] Input molecule files explicitly used for reagent 1. If pro-
vided, this file should contain only building blocks which are suitable for the
first reagent specified in the reaction given with -r option. Supported file types
are .smi, .smiles, .mol, .mol2 and .sdf.

[--input-reagent-2] Input molecule files explicitly used for reagent 2. If pro-
vided, this file should contain only building blocks which are suitable for the
second reagent specified in the reaction given with -r option. Supported file
types are .smi, .smiles, .mol, .mol2 and .sdf.

[--input-reagent-3] Input molecule files explicitly used for reagent 3. If pro-
vided, this file should contain only building blocks which are suitable for the
third reagent specified in the reaction given with -r option. Supported file
types are .smi, .smiles, .mol, .mol2 and .sdf.

[--input-reagent-4] Input molecule files explicitly used for reagent 4. If pro-
vided, this file should contain only building blocks which are suitable for the
fourth reagent specified in the reaction given with -r option. Supported file
types are .smi, .smiles, .mol, .mol2 and .sdf.

-p [--protecting-groups] With this option you can specify a file containing
SMARTS definitions for protecting groups. The file should be a simple text
file containing line-separated SMARTS definitions. If you provide such a file,
the specified protecting groups present in the input building blocks will be
clipped and removed from the generated fragments. An example file (named
ProtectingGroups.txt) with most commonly used protecting groups can be

18

found in the example folder within the SpaceLightDBCreator directory. The
example in Section 3.6 can be used analogously.

-o [--output-file] Specify the path and name of the output file. The output
file is a topological fragment space database (.tfsdb) file. The suffix (.tfsdb) is
required. Please note: You can write topology graphs from different reactions
step-wise into a single database. See the example in Section 5.3.

-f [--insert-full-molecules] With this option you can insert the com-
pounds in the input file (specified with the -i option) as ”full molecules” di-
rectly into the database (no fragment and topology graph generation). This is
especially useful if you want to add molecules to the database which cannot
be constructed from the reactions of the space.

5.3 Example: Creating a topological fragment spacedatabase

On the command-line, navigate into the example folder within the SpaceLight-
DBCreator directory. Here you can find two example reaction definition files
(named amidecoupling.smirks and suzuki.smirks) and a file with suitable
building blocks (building_blocks.smi). They cover two prominent examples
of reactions used in Medicinal Chemistry: amide coupling and Suzuki reaction
(see Figure 2). More information on how to properly formalize reactions for
space generation can be found on our website.[2][3] First, you can use the
amide reaction to create a new database:

../spacelight_db_creator -r amidecoupling.smirks -i building_blocks.smi
-o topo_space.tfsdb

This call will create a new database file named topo_space.tfsdb within the
example folder.
Next, simply add the topology graph for the Suzuki reaction to the existing
database:

../spacelight_db_creator -r suzuki.smirks -i building_blocks.smi -o topo_space.tfsdb

You can repeat this process for multiple reactions and their associated build-
ing blocks. We recommend to automate this process using shell or python
scripts. For paying customers, we have pre-compiled workflow scripts to facil-
itate space generation for multiple reactions. Please get in touch with us, and
we can provide you with the scripts and assistance.

19

Topological fragment space database files generated in that way can directly
be searched with SpaceLight. You can also put this file in a zip container (e.g.
together with the ”classical” fragment space files, see Section 4) and use the
zip file with infiniSee’s Analog Hunter and Scaffold Hopper.
For more information on SpaceLight visit:
https://www.biosolveit.de/products/#SpaceLight.

20

https://www.biosolveit.de/products/#SpaceLight

6 General Options

This section describes the general options which are identical for each of the
three tools.

-h / --help Displays the commandline help with short descriptions for every
argument option.

--license-info Showsdetailed information about the license setup you cur-
rently use.

--thread-count Specifies themaximumnumber of threads used by the tool.
By default, all available logical cores of your computer are used. Youmay want
to reduce the number of threads used if you want to run other computations
on your computer at the same time, or if you share the compute resource.

--version Displays information on the version of the respective tool on the
commandline. In quoting the tool, please mention this version number.

-v / --verbosity Sets the verbosity level, e.g., the level of console output,
with an integer argument. The default value is 2. The following options are
available:

0 Silent. No messages will be displayed in the console during the run. Er-
rors will be ignored whenever possible.

1 Error. Only error messages will be displayed.

2 Warning. The default setting, warnings and error messages will be dis-
played.

3 Workflow. In addition to errors and warnings, information on the differ-
ent steps are displayed on the commandline.

4 Steps. In addition to the ’Workflow’ option, the progress of each step is
displayed in detail.

21

7 Further Reading, References

Additional information about CoLibri is available at https://www.biosolveit.
de/products/#CoLibri.

Complementary tools, especially the commandline search tools FTrees and
SpaceLight as well as the Chemical Space Navigation Platform infiniSee, can
be obtained from the BioSolveIT website (https://biosolveit.com).

References

[1] https://www.biosolveit.de/academic-drug-discovery/.

[2] https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_
implementation-of-reactions.pdf.

[3] https://www.biosolveit.de/wp-content/uploads/2022/02/
BeginnersGuide_SMARTSeditor.pdf.

We wish you great success and much joy with CoLibri!

22

https://www.biosolveit.de/products/#CoLibri
https://www.biosolveit.de/products/#CoLibri
https://biosolveit.com
https://www.biosolveit.de/academic-drug-discovery/
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf

	Introduction
	Technical Prerequisites
	The ReactionSynthesizer
	General
	Program Options
	Example 1: Generating a single space for a reaction
	Example 2: Enumerating product molecules for a reaction
	Example 3: Transforming molecules for FastGrow databases or covalent docking
	Example 4: Removing protecting groups from product molecules
	Example 5: Debugging reaction definitions

	The FragspaceMerger
	General
	Program Options
	Example: Merging two single reaction spaces

	The SpaceLightDBCreator
	General
	Program Options
	Example: Creating a topological fragment space database

	General Options
	Further Reading, References

