Human Protein Kinase CK2 Inhibitors: discovering new scaffolds

trinity of drug discovery: targets, compounds, and chemical spaces

REPRESENTATIVE FAMILIES OF CK2 INHIBITORS

SILMITASERTIB

CX-4945, is a small-molecule inhibitor of protein kinase CK2

OTAVA chemicals

Approaches for Targeted Libraries Design

- We use a wide range of ligand- and receptor-based approaches for targeted libraries design.
- If the input data is enough, we use several methods at the same time, combining them.

Ligand-based Approaches

Ligand-based pharmacophore modeling

Examples of CK2 inhibitors developed by OTAVA

3-hydroxy-4'-carboxyflavones – novel inhibitors of protein kinase CK2

Compound	R_2'	R_3'	R_4'	R_5'	R_6'	R ₃	R ₅	R ₆	R ₇	R ₈	IC ₅₀ (μM)
14	Н	Н	CO_2H	Н	Н	OH	Н	Me	Me	Н	0.3
15	Н	Н	CO_2H	Н	Н	OH	н	OMe	Н	Н	0.25
16	Н	Н	CO_2H	Н	Н	OH	Н	NHAc	Н	Н	0.72
17	Н	н	CO_2H	Н	н	OH	н	C1	Me	н	0.17
18	Н	н	CO_2H	Н	н	OH	Н	C1	Н	Н	0.18
19	н	Н	CO_2H	н	н	OH	Н	Me	Н	Me	0.07
20	Н	Н	CO ₂ H	Н	Н	OH	Н	Et	Н	Н	0.16
21 (FLC21)	Н	Н	CO_2H	Н	Н	OH	Н	C1	Н	Cl	0.04
22	Н	Н	CO_2H	Н	Н	OH	Н	Н	Me	Н	0.7
23	Н	Н	CO_2H	Н	Н	OH	Н	Br	Н	Н	0.08
24	Н	н	CO_2H	Н	н	OH	Н	Н	OMe	Н	0.29
25	Н	Н	CO ₂ H	Н	Н	OH	Н	C1	Н	Me	0.05
26 (FLC26)	Н	Н	CO_2H	Н	Н	OH	Н	Br	Н	Br	0.009

3-hydroxy-4'-carboxyflavones – novel inhibitors of protein kinase CK2

Complex of **CK2–FLC21** obtained using molecular modeling

Complex of **CK2–FLC21** obtained by X-RAY analysis

Superposition of **CK2–FLC21** complexes obtained with molecular modeling (blue) and X-Ray analysis (atom coloured)

Flavone inspired discovery of benzylidenebenzofuran-3(2*H*)-ones (aurones) as potent inhibitors of human protein kinase CK2

Bioorganic Chemistry 2020, 102, 104062

(4'-position in ring B)

Comparison of binding modes of FLC26 (blue), obtained with crystallographic analysis (PDB ID: 4UBA) and inhibitor 12m (orange), obtained with molecular docking

Substituted thieno[2,3-*d*] pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2

- **R1** 4-FC₆H₄ < 3,4-CH₃C₆H₃ = 4-ClC₆H₄ < 4-C₂H₅OC₆H₄ < 4-CH₃C₆H₄
- **R4** $CH_2CH_2COOH > CH_2COOH > CH(CH_3)COOH > CH_2CH_2COOH = CH(C_2H_5)COOH$

Protein Kinase	Kinase residual activity in presence of TTP22, %	Kinase residual activity in presence of TTP25, %			
СК2	0.72	0.86			
Jnk3	104	94			
Rock1	126	115			
Tie2	70	76			
Ask	92	100			
Aurora A	23	48			
c-Met	114	115			
FGFR	92	99			

TTP22 IC₅₀=100 nM K_i = 40 nM

> OTAVA chemicals

Identification of 1,3-thiazole-5-carboxylic Acid Derivatives as Inhibitors of Protein Kinase CK2

Current Enzyme Inhibition, 2018, 14, 1-8

Dihydrobenzo[4,5]imidazo[1,2-*a*]pyrimidine-4-ones as a new class of CK2 inhibitors

OTAVA chemicals

Molecular Diversity 2018, 22, 991

Virtual screening of a small organic compounds library was performed by

- molecular docking and
- pharmacophore screening

298 compounds were selected for biochemical testing according to the results of virtual screening. The compound activity was determined by *in vitro* biochemical tests using γ -P32 ATP.

In vitro experiments showed that **18 compounds** have inhibitory activity against CK2 with IC_{50} in the range of 1.4 to 20 μ M

The active compounds belonged to **15 chemical classes**

"When the chemistry is right, all the experiments work"

Gregory Benford, Shipstar

CHEMriya™

A new, multibillion-sized pool of on-demand chemicals, available for therapeutic R&D.

"CHEMriya" — alluding to Mriya, the Ukrainian word for "dream" — is a chemical space comprising 11 billion tangible screening compounds that are not present in any other commercial chemical catalog

ACKNOWLEDGEMENTS:

MOLECULAR DESIGN GROUP

ORGANIC CHEMISTRY GROUP

BIOLOGICAL GROUP

To request information about our products and services, feel free to contact us:

OTAVA LTD. Yaroslav Bilokin Executive Director yb@otava.ca

400 Applewood Crescent, Unit 100 Vaughan, Ontario, L4K 0C3, CANADA Tel.: +1-416-549-8030 Fax: +1-866-881-9921

www.otava.ca

