

SeeSAR

Beginner's Guide Version 14 - Atlas

Time to start an interactive dialog with your compound!

6. Inspirator	78
7. Similarity Scanner	93
8. Chemical Space Docking	97
9. Energy Minimization	119

DB Code or Keyword Data 字 画 画		
SeeSAR comes with a "Color blindness" mode. It can be turned on in the "Appearance" menu.		Theme
Paste protein from clipboard (Ctrt+V) OK drag and drop a file here OR load via the toolbar.		Color Blindness Green-Red Blue - Red
Show Binding Site Only Change Visibility • o	Target View Control	کې Name (e.g. gly)
	No Protein Selected No Molecule Selected	Ģ

more.

	Data			¢1 (3	۵	* *	3
2ZFF - Define Your Binding Si 56 residues are currently selec You can modify the binding site above. Molecules Name 53U_H_2001	ite cted for the binding site. e selection, or confirm with the green # Residues	button 30					
2 3 4	1. Basics 19 0.28 11 16 0.20 7 12 0.12 7 SeeSAR platform	is your intuitive,	visual drug design	n			
	2D platform discove fragmen in the m	ry process — fro nt-based design nost fun and con	m virtual screenin — SeeSAR fosters prehensive way.	g to ideation		5	
Show Binding Site Only	Change Visibility • of F	Targe	Add Residue to Binding Site Show Component in 3D		, O Name		
(at) 2255	190 161 (LE162) VAL163 (CLU164) ARC165	195 PROIGE WALTER CYSIGE LISIGE AS	Pocus View on This Component Component Component	5175 (LE176 (THR177) ASP178	205 ASN129 MET180 PHE1	81) CYS182 (ALA 188)	210 Givit
		3700					

€ 🐣 2ZFF	X SB PDB (1 hits)	×		Ċ,	?	ت	<u>•</u>	*	8	0
22FF Exploring Thr	rombin S1-pocket									
Ty of pi gu	ype a PDB co f the protein) rotein directl uide we will u	de in the search box (or and press enter to dow y from the RCSB PDB. Fo ise 2ZFF as example.	the name mload a or this							
		:								
	ote: ou can also le	ad your protein from a	file via							
th	ne file menu l	outton.								
L										
	2D									
		Target Vi	ew Control				0			
Show Binding Site Onl	y Change Visibility	• of Residues • O 😪 🖌					D Name	e (e.g. gly)		-
		No Protein Selected	No Molecule Selected							Ø

			É7,	?	(ئ	<u>•</u>	*	8	(2)	
A B T										
Proteins A										
					<u>}-</u>					
Ligand for 2ZFF Name Estimated Affinity PM nM µM mM Estimated Affinity PM nM µM mM		a								
2D 53U_H_2001		6400		6						
H ₃ N ⁺ N ·····N H			As the custor Contro	e 3D mize ol" w	viev the vind	v car visu ow.	n eas Ializa	atior	set bi n in tl	usy, let's he "Target \
	Target \0	iou Control								
Show Binding Site Only Change Visibility of	Residues	ew control				р Nam				
	S GLV2 LEU3 ARG4 PROS LEUG	10 15 PHE7 GLUB LV59 LV510 SER11 LEU12	GLU13 ASP1	14 LYS144	A THR148	20 GLU14C	ARG14D	ilu14 e) (li	EU14F) (L	
	2ZFF	53U_H_2001				Q (11	nessage		

Example:

To visualize surface, select Change "Visibility" of "Surfaces" and toggle on the PDB code. To adjust this surface visibility, set Change "Color" of "Surfaces" and right-click on PDB code to explore the options.

Data Data 2ZFF - Define Your Binding Site 30 residues are currently selected for the binding site. You can modify the binding site selection, or confirm with greach butter a backs	n the	You	o 🤨 🔅 😰 🕯 are now in the idues already i	e Binding Site mode .
green button above.		hig	nlighted in pink	k.
Molecules	·			
53U_H_2001	30			
Pocket ID # Residues DoGSiteScore 4	Donors			
	Target Vie	w Control		
Show Binding Site Only Change Visibility	of Residues 🔹 🔿 💿 🖉		Ø Name ((e.g. gly)
sli ZZFF GLUIC ALAIB ASPIA	5 CYS1 GLY2 LEU3 ARG4 PRO5 LEU6 P	10 15 HE7 GLU8 LYS9 LYS10 SER11 LEU12 GLU13 7	20 SP14 LYS14A THR14B GLU14C AR	IGYAD (EUTA) (EUTA)
	2ZFF	No Molecule Selected		1 message

	1 2 2	0)						d'a	?	()		×	8	
	Data														
2ZFF - Define Your B 30 residues are curr You can modify the b green button above	Binding Site rently selected for t pinding site selectio e.	he binding site. m, or confirm wi	th the												
Molecules			-												
Name		# Residue	es				1								
53U_H_2001			30				× -	ada	a						
Unoccupied Pockets Pocket ID	# Residues C	5. DoGSiteScore	# Donors						A A A	かりと					
					Target	/iew Control						-			
Show Binding Sit	te Only Change	e Visibility	of Res	idues 🔹 🤇								O Nam	ne (e.g. gly	0	
	2ZFF GLU1	C ALA18 ASPIA	S A CYS1 GLY2	LEU3 ARG4	PRO5 LEU6	10 PHE7 GLU8	LYS9 LYS10 SER	15 11 (LEU12) GL	LU13 ASP	14 LYS14	A THR14	20 GLU14C	ARG14D	GLU14E	EU14F
				2ZFF			No Molecule Sele	cted					1	message	

Data	
27EF - Define Your Binding Site	
56 residues are currently selected for the binding site. You can modify the binding site selection, or confirm with the green button above .	Unoccupied pockets are listed and presented with their respective color in 3D.
Molecules	Y DA LE LA
Name # Residues	
53U_H_2001 30	
Unoccupied Pockets	
Pocket ID # Residues DoGSiteScore # Donors # Acceptors	
1 56 0.53 39 45	
4 12 0.12 7 10	
You can callect desired binding packats by	
rou can select desired binding pockets by	
clicking on the colored pockets on 3D or right-	To add residues: in 3D, use Ctrl + left click to
click on the table entry.	select. In the sequence view right-click on a
	residue to access the option
	residue to access the option.
	Finally, confirm your selection by clicking on the
	top green play button.
Charge Minister City Only Change Ministry and Participant (A	Tar, 1
190	195 O Foru Manager 205 210
all 22FF 161 (LE162 (VAL163) GLU163 (ARG165) PR0166 (VAL167) (CY	DS168 LVS169 APProv. control minore watering religion and GTS (LE176) THR177 ASP178 ASN179 (MET180) PHE181 CVS182 (ALA183) GLV18
2ZFF	No Molecule Selected 1 message

2. modify (using the function of choice from above)

Note that many editor functions have shortcut-keys. E.g. select a bond and type 1, 2 or, 3 on the keyboard, or select an atom and type the element (C, N, O, ...).

6 🖡 % 🛞 💊 🗞 🕀 🗊 🕤	C •	É.	? 🔅 单 % % 🧐
Data	III. Guidach an Guid		
2 Adding Molec			
z. Adding motec			
	0		
l	<u>}</u>		
2D			
)
		d T	
			-
·			
	Target View Control		
Show Whole Protein Change Visibility of Residues	10	15	20 Name (e.g. gly)
011		TRP141 GLY142 ASN143 GLN151 PRO152	
	27EE No.M		1 message

2ZFF

8

'Maximum Number of Poses' defines the highest possible number of poses that will be generated for each molecule. SeeSAR generates 10 poses per default.

'Clash Tolerance' defines how SeeSAR handles clashes between ligand and target during docking. For tight binding sites increase of the tolerance to 'Medium' or 'High' may improve

'Allow Ring Conformations' can be used to allow energetically unfavorable ring conformations (twist, boat).

'Allow Stereo Center Flipping' can be used to automatically flip R/S or E/Z or both stereo centers during docking.

ILE174 ALA183

o 🐵 🏛 🏦 🌖 🛈 🛇	s (* (* (* (* (* (* (* (* (* (* (* (* (*
Add from file or another mode	The 'Generated Poses' table will be populated
Docking Library (# 3)	with generated poses of the ligands from
Generated Proces (# 30)	'Docking Library'.
Name Estimated Affinity LLE Tor. 1 Compou1001 Image: Affinity Image: Affinity Image: Affinity 2 Compou1002 Image: Affinity Image: Affinity Image: Affinity Image: Affinity 2 Compou1002 Image: Affinity Image: Affinity Image: Affinity Image: Affinity 2 Compou1002 Image: Affinity Image: Affinity	
	2
Target	View Control
Show Whole Protein Change Visibility of Residues Company	D Name (e.g. gly)
all	GLU197A ASN98 LEU99 TRP141 GLV142 ASN143 GLN151 (PR0152 LEU160 SER171 THR172 ILE174 ALAT83 GLV184 (
	-
22FF	No Molecule Selected

6 🐵 🗮 🏦 🌖 🕕 🛇	🔊 % % 🔮 🤹	
Data Image: Stimated Affinity Image: Stimated Affinity	If your poses did not generate affin automatically, check all poses with column and 'Check all'. Then go to 'Calculations for checked and select 'Estimated Affinity'. Note: You may restrict the HYDE-calculations is elected set of checked molecules.	ity the 'Checked' d molecules' on to a pre-
5 Shouldhala Bestala Shaara Mishilita a af Davidura a (A	Target View Control	
Sinow write Protein Change Visibility or Residues	Image: statute Image:	
2ZFF	No Molecule Selected	

🗟 💬 🗮 🏦 🌖 🛈 🛇	▲ ⑦ ᆥ ▣ ※ ※ ◎
Data	9
Template Molecule (# 0)	Now the estimated affinities appear as a range
	on the logarithmic scale.
Connected Resear (# 20)	
Senerated Poses (# 30)	Clicking on a column header sorts according to
	🚽 🖳 🐃 this value.
2 Compou1_002	
3	
5 Compou1_005	
6 (⊅ Compou1_006 7 ○ (> Compou1_007 ♦ ●	
8 Compou1_008	
10 □ (P Compu1_010 ► ♣)	Later L
11 Compou <u>1</u> 001	
13 □ ⑦ Compou1_003 ► 🖗	Sold my Sa
14 ♀ Compou1_004 ♥	
16 🖸 🖓 Compou1_006 🛏 🌒	
17 Compou1_007	
Target V	fiew Control
5 Show Whole Protein Change Visibility • of Residues • 🕚 😪 🖌	Name (e.g. gly)
1 5 01 227F GLU39 LEU40 LEU41 CYS42 HIS57 TYR60A TRP60D LYS60F ARG73	10 15 20 GLU97A ASN98 LEU99 TRP141 GLV122 ASN143 GLN151 (PRO152 LEU160 SER171 THR172 (ILE174 ALA183 GLV184)
2ZFF	No Molecule Selected 1 message

	e 🐼 🛠 🔅 💿 🔅 e
Data	
Template Molecule (# 0) Add from file or another mode Decklera Liberae (# 2)	To inspect multiple poses in comparison, toggle the permanent visibility by marking a molecule
Generated Poses (# 30) Compou2.005 Compou2.001 Compou2.001	as reference. Now stay visible as you select other molecules. You can even color each molecule to differentiate them.
S Compo Copy to Clipboard [Ctr+C] P S Compo Delete [Del] P Compo Compo Calculate Estimated Affinity P Compo Calculate H-bond Network P P Compo Calculate Torsion Quality P P Compi Calculate Torsion Quality P P Compi Calculate Torsion Quality P P Compi Calculate Optibrium Properties P P Compi Add to Binding Site Mode P P Compi Add to Analyzer P P	
18 Compo 0 Add to Molecule Editor 0 Add to Inspirator 0 Add to Docking Mode 10 Add to Similarity Scanner 8 Use as Template	You can calculate more pose assessment parameters with a right click on a molecule, or using the method describe in the previous slides to calculate them for all checked molecules.
Target View Control	Q Name (e.g. gly)
1 5 10 227F GLU39 LEU40 LEU41 Cr542 HI557 TYREGA TERPEGO LV550F ARG73 GLU97A ASH98 LEU19	15 20 TRP141 GLV142 ASN143 GLN151 FRO152 LEU160 SER171 FHR172 ILE174 ALA183 GLV164
2ZFF Com	pound1_2_002

6 🐵 🏛 🏦 🌖 🛈 🛇		₹1 <mark>0</mark>	? 🔅 Չ % 🕅
Data			
	Switch to Grid		
Template Molecule (# 0)	*		
Docking Library (# 2)			
Generated Poses (# 20)			
Name Estimated Affinity pM nM µM 1 Image: Application of the physical structure of the ph	LLE Tor. Intra- Inter- clash clash R		
4. Covalent Do	cking		
9 4WI_B_4UI_/_UUB U		T N	
11 C 4WL8_401_7_005 O			
12 0 0 4WL_B_401_7_008 0			
2D			
4WLB_401_7_001			
H H H H H H H H H H H H H H H H H H H	Η		
	Target View Co	ntrol	
Show Whole Protein Change Visibility of Res	idues 🔻 💍 👒 🖌		🔎 Name (e.g. gly)
	15 15 (17143) SEP144 (75145) (17145) (115163)		25
	C 061140 061144 C13145 061146 NIS165		
	7TLL	4WLB 401 7 001	

👩 🕹 лш × 🚺	G	4 <mark>0</mark> (?) 🔅 📮 🛠 💸 🗠
Data	3	
7TLL - Extract Your Ligand		
Hetero Groups		
LOI Name Estimated Affinity pM nM µM mM 1 Do not extract a ligand		You can perform covalent docking at any PDB protein structure. PDB files that contain a
2 ↓ 4WLA401 ① ···································		covalent ligand provide this information upon loading within the info icon.
	Ser	For this example, we will use the PDB 7TLL .
	AND S	
	SAR	The linking point is represented as R in the 2D structure.
20		CAN Y
WILE-40 HN R HN R HN R HN R HN R		
	Target View Control	
Change Visibility of Residues	• • •	🔎 Name (e.g. gly)
1 5 010 77LL SER1 GLV2 PHE3 ARG4 LV55 MET6	10 ALA7 PHE8 PRO9 SER10 GLV11 LVS12 VAL13	15 20 GLU14 GLV15 CYS16 MET17 VAL18 GLN19 VAL20 THR21 CYS22 GLV23
	7TLL 4WLE	3.401 Q

	a	0 🔅 🧯] 🛠 💥 🍳	b -
Data				
Switch to Grid				
Template Molecule (# 0) Add from file or another mode Selecte	d covalent	eSAR autom	atically ident	ifies the residues
Docking Library (# 1) Name Estimated Affinity Attachn	nent bir	nding site, w	here covaler	it attachment may
		cur. These a osules on th	re indicated e side chains	by blue translucent 5.
	*••• То	select one o	of the residue	es for covalent
Generated Poses (# 0)	do 🔘 🔘 🔍	cking, a sing	le click on th	e corresponding
	cap the	osule is suffi e color of the	icient and vis e capsule cha	ually indicated by anging to pink.
2D				
	Potential covalent attachment points			
Target	iew Control			
Show Whole Protein Change Visibility of Chains O		Q	Name (e.g. gly)	-
all 77LL Chan-A Chan-B				
7πц	4WI_B_401	Ç	1 message	

💩 🐵 🛎 🏦 🕥 🗊 🛇	s (*) (*) (*) (*) (*) (*) (*) (*
Data	
🔢 😳 🐨 🗟 🤾 🗓 🔣 🖬 🖬	
Template Molecule (# 0)	Male suite suite suit lieless attacker suite ser attill be
Docking Library (# 2)	Molecules without linker attachments can still be
■ Tor. Intra- Inter-	directly loaded into the docking library. Covalent
1 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔	docking automatically identifies warheads and
2 🖸 😥 🖓 📰 Example 🕕	modifies the ligands to attach a covalent linker.
Generated Poses (# 20)	
	In this demo, an example molecule with an
	acrylamide reactive group, without a linker, is
	loaded into the docking library.
2D	
H	
	For details on which reactive groups are
	transformed refer the Elevy guide
0 1-N	transformed, refer the FlexA guide.
Target	View Control
Show Binding Site Only Change Visibility of Chains Visibility	D Name (e.g. gly)
all 7TLL Chain-A Chain-B	
7111	Example Link to Flexx Guide

o 😁 🗮 🏦 🌖 🚺) 📀 🕹		ng 🖓 🔇 🔅 🖉 %	8
	Data			
		III Switch to Grid		
Template Molecule (# 1)			~	
📌 🥐 50D_A_601			• / 1	
Docking Library (# 1)				0
Molecules Libraries		0,2		
Name Mole	ecules Uploaded D	bescription	here are to a	V/
1 (intersting) test_compounds.sdf	26 15 Oct 2024			\sim

5. External Docking

Example 30_4_01 Example 30_4_02

						and the second s			
				Target Vie	w Control				
Show Binding Site Only	Change Visil	ibility 🔻 of	Residues 🔹 💍	9				D Name (e.g	
	1		5		10	15		20	
all SEHR	ARG4 ARG5	TRP6 PHE7	HIS8 PRO9 ASN10	ILE11 THR12 G	LY13 VAL14 GLU15	ALA16 GLU17 ASN18 LEU19	LEU20 LEU21 THR22	ARG23 GLY2	4 VAL25 ASP26
			EEUD		SHDOOL	1/Evample 7, 4, 01			2 morrages

Data	
emplate Molecule (# 0) Add from file or another mode	The window resembles the local docking
Molecules Libraries Name Estimated Affinity LLE Tor. Intra-	mode, but now the "Docking library" has two sections: "Molecules" and "Libraries
D D S2 12 12 00 12 pM nM µM mM clash	"Molecules" refers to those molecules yo load locally in SeeSAR, but you intend to start docking in the remote machine.
Name Estimated Affinity LLE Tor. Intra- pM nM µM mM	"Libraries" refers to the molecule library already uploaded to the HPSee server.
ZD	
Target View Cont	
Target View Cont	Name (e.g. gly)

🕀 🕐 🔅 💁 🛠 💸 🕸

Max Template Molecule (# 0) The pharmacophore and docking parameters Maximum Number of Poses can be modified as usual, with an additional Docking Library (# 0) docking parameter called "Maximum Number Molecules Libraries of Solutions." This defines how many top poses Clash Tolerance 5 D 2 2 C 0 you wish to retrieve from the docking Standard Medium High experiment. Allowed Ring Conformations Generated Poses (# 0) Setting it to a specific number X will return the 1 top X poses, while selecting "Max" retrieves up to 50 thousand poses, which is the maximum Allow Stereo Center Flipping capacity allowed by the SeeSAR table. R/S E/Z Both Flexible Covalent Attachment Target View Control D Name (e.g. gly) Change Visibility • of Residues • () 🔍 🖌 Show Binding Site Only 10 1 15 20 5 - 🗧 SEHR ARG4 ARG5 TR76 PHE7 HIS8 PRO9 ASN10 ILE11 THR12 GLY13 VAL14 GLU15 ALA16 GLU17 ASN18 LEU19 LEU20 LEU21 THR22 ARG23 GLY24 VAL25 ASP26 ٠ 5EHR

(ph4)

÷

Maximum Number of Solutions
Image: Image	
Template Molecule (# 0) Add from file or another mode	For this experiment, we will perform
Docking Library (# 1) ▲ Molecules Libraries Ó =↑ Name Molecules Uploaded Description	docking using the library already uploaded to the HPSee server.
1 test_compounds.sdf 26 15 Oct 2024	Instructions on how to upload a library to HPSee are provided in the HPSee Guide
Image: State of the state o	
20	
Show Binding Site Only Change Visibility of Residues ()	Name (e.g. glv)
1 5	10 15 20
	GLY13 VAL14 GLU15 ALA16 GLU17 ASN18 LEU19 LEU20 LEU21 (THR22 ARG23 GLY24 VAL25 AS926 4
5EHR	No Molecule Selected

4° (? 🔅 🧕 🛠 🕸

Show Binding Site Only () 🖓 🖉 🖉 Name (e.g. gly)

20 25 30 ASP14 LYS14A THR14B GLU14C ARG14D GLU14E LEU14F LEU14G GLU14H SER14I TYR14J ILE14K ILE16 VAL17 GLU18 GLU19 SER20 ASP

To grow into a binding site, select a bond in 2D or 3D to select which part of the molecule should be kept. Only one selection is required to perform growing.

Once you made a selection, the "Growing" button will become active. Push it to generate results.

Saturated part of the molecule will remain

GLUIC ALAIB ASPIA CYSI

HaN

4 2 × M 0 5 9

😁 🟛 🏦 🕕 🙆

1 🗆 🖉 🏠 🗔 ð 🖓 53U_H_2001

രീ

Molecules (# 1)

9

Name

III Switch to Grid

•

Grey-out part of the

molecule will be replaced

2ZFF

Estimated Affinity

.

FFF T	Sequence View	Show Binding Ste Ony O Co Plane (e.g. gly)
ZD Elavienz C	Cc1cc((C#N)cc(C)c1Oc1nc(Nc2ccc(C#N)cc2)nc(N)c1Br Etravi
	0=C1	Compounds: Nc2ccc(Cl)cc2[C@@](C#CC2CC2)(C(F)(F)F)O1 Efaviren
Generated Poses (# 0) D		For this example, we will work with two
Image: Constraint of the state of the s		The Similarity Scanner can be used for liba based drug discovery. You can add molecules as SMILES by copy- paste those with [Ctrl + V] or load those via
Data		

	Select a ligand (in this case Efavirenz) as a template in the molecule window. Generate alignment poses with the play button.
Connected Record (# 0)	Ŷ
Similarly Tor. Intra- Rating Clash	You can add pharmacophore constraints and adjust the screening parameters as well.
$ \begin{array}{c} 2D \\ Edwarenz \\ F \\ F$	
- 2 - M O E D	Sequence View Show Binding Site Only O O D Name (e.g. gly)
	No Protein Selected Eferirenz

<u>] ∆ secr × ∆ 0 </u>	-6		\$ ⁴ O \$3 Q %	<u>× •</u>
			Now we are ready to st For this example, we wi	art a C-S-D run. ill use 5KKT as PDB.
			Load the Protein in the Protein Mode.	
Paste protein from clipboard (Chr/V) OR drag				
into dong at the intervolve				
20				
	Target View Control			
Show Binding Site Only Change Visibility • of Residues • O	e e		D Name (e.g. gly)	
	No Protein Selected	No Molecule Selected		()

SIXIT X & O SIXIT - Extract Year Ligand Hetero Groups IN Nume Extract aligned Do not extract a ligand D D not extract a ligand	E	 ♥ ⑦ ⑧ ▣ ※ ≋ ◎ Select the first ligand and confirm your binding 	
an n son		site.	
Change Binding Site Only Change Michilley and Britishing and	Target View Control	O Norma (and white	
Show Binding Site Only Change Visibility of Residues CO	10 15	0 25 30	
HI SKAT SKAT SKAS PHEZ GLUB THAS ARGID PHEIT GLUIZ (LYSIS	METI4 ASPIS ASNI6 LEUI7 LEUI8 ARGIS ASP20 PROZI LYSZZ SERZ3 GUZ4 V	25 AN15 \$927 A928 CNS9 LEBS LEBS LEBS A978 GYB LEB4 A995 AAH LEB7 V428 TY	
	5KKT 6U2_A_501	0	

0 1. elect a Chemical Space for Space Docking Fragments NEH Space ROCK1-test-spa

Chemical Spaces that were previously uploaded using the Dashboard can be seen here.

We will use a small custom Space for this tutorial, called 'ROCK1-test'.

You download the ROCK1-test.space here. It's a small Chemical Space than can conveniently be used to test if your setup works as intended.

Select the Chemical Space you want to work with and click on the green button on the top to start the C-S-D run with the current protein and binding site.

You now have a choice to either perform "Template CSD" or a "Standard CSD".

- **"Template CSD"** will place the anchor fragment in reference to the "Template Molecule".
- "Standard CSD" explores the binding site freely to find the best possible pose to bind the anchor fragments.

If you choose to perform a "Standard CSD", skip the next slide and continue the demo. If you choose to perform a "Template CSD", the next slide shows how to add one.

Set your docking parameters here. (?) 🔅 😐 % % 🚳 2 Template Molecule (# 0) The initialization steps of the "Template Docking" and "Standard Docking" are the same. Guide your Anchoring stage of docking with desired pharmacophore constraints. Hint: Check out "linker constraints"! This is a pharmacophore definition for the extension vector of your building blocks/synthons. Define Pharmacophore Define New Constraint Target View Control Show Binding Site Only Change Visibility • of Residues • () Q Name (e.g. gly)

ROCK1-test-space

5KKT

.

Template	Data Data Data Data Data Data Switch to G Switch to G	Torsion and clash are applied autor The results are so based on LE.	filters natically. orted	 ♀ ⑦ ♀ ✓ ✓<!--</th--><th>Representation Representation Representation Representation Representation Representation</th><th>ent to the right in th respect to your generated.</th>	Representation Representation Representation Representation Representation Representation	ent to the right in th respect to your generated.
Click "+" to select fragment step.	ts for the Extension			Keep in mind is the extens built-up mol lf it points to solvent-expo do not want next step.	best them for their d that the light-b sion vector for th ecules will grow owards an undes osed lumen or a to fill), do not pic Importal	hinding modes. lue dummy atom his synthon: All from it. ired area (e.g., binding site you ck this pose for the ht hint
Show	Binding Site Only Change Visibility of	Targer Vi Residues O O O O O S ARG10 PHE11 CLU12 VIS13 METIC A	ew Control 10 15 575 ASKIG LEUT? LEUIB ARCI? AS720 FF	1021) (V522) 55922) GUU2(© Name (e.g. sty) 20 ML25 ANZ5 5827 AS22 C	

2 (?) (i) (i) (ii) (iii)

Select the fragments you want to grow and continue with the extension.

The molecules produced depend on the fragments you chose to extend.

ragments: (# 10 et 🖂 Your results may differ! #F163 1 #E72 1 #E56_1 #E54_2 #E158 1 #E57 1 #E153_2 203 #E125_1 #E129_1 . . 255 10 #E66_1 . . ******** 2D #E152_4 Target View Control Show Binding Site Only Change Visibility • of Residues • (*) Q Name (e.g. gly) #E152_4 . 5KKT ROCK1-test-space

G. II () () ≡

Template Molecule (# 0)

60 +

61 1

ragments on Server: (# 158)

#E155 1

#F127 1 #E149_4 #E149_1 #E305 3

#E152_4

Data

Estimated Affin

《 《 1/2 ③ 》

Extension 2 •

III Switch to Grid

Tor Intra- Inter-

clash

Image: Control of the Autobash in comp. Total Total		From here on, you can export the refined structure or continue working with it. For export, check the refined structure and click on 'Save proteins'. All checked proteins will be exported to your selected folder. If you are working with several structures, make sure to rename them (by double clicking on the name in the 'Filename' column).
	Target View Control	
Show Binding Site Only Change Color • of Surfaces • ()		\mathcal{O} Name (e.g. g))
	Protein surface not available in this mode.	
		1 message

Have fun and enjoy your interactive drug discovery journey with SeeSAR!

If you have any problems, please reach out to us: support@biosolveit.de