
CoLibri Command Line Documentation
Version 8.1

Sascha Jung, Raphael Klein & Marcus Gastreich

March 7, 2024

©2024 BioSolveIT. All rights reserved.

Contents
1 Introduction 2

2 Technical Prerequisites 4

3 The ReactionSynthesizer 5
3.1 General . 5
3.2 Program Options . 6
3.3 Example 1: Generating a single space for a reaction 9
3.4 Example 2: Enumerating product molecules for a reaction 10
3.5 Example 3: Transforming molecules for FastGrow databases or covalent

docking . 11
3.6 Example 4: Removing protecting groups from product molecules 12
3.7 Example 5: Debugging reaction definitions 13
3.8 Example 6: Using reactions with functional group labels 14

4 The FragspaceMerger 15
4.1 General . 15
4.2 Program Options . 16
4.3 Example: Merging two single reaction spaces 16

5 The SpaceLightDBCreator 18
5.1 General . 18
5.2 Program Options . 19
5.3 Example: Creating a topological fragment space database 21

6 Prepare Reaction Definitions for Space Generation 23

7 General Options 28

8 Further Reading, References 29

1 Introduction

All links, references, table of contents lines etc. in this pdf are clickable.

Please note that this toolkit is a command line package.

CoLibri is a toolkit containing three separate command line (CLI) tools (React-
ionSynthesizer, FragspaceMerger and SpaceLightDBCreator) to create combi-
natorial chemical spaces (”fragment spaces” or ”topological fragment spaces”)
of multi-billion size and beyond. As input, the tools take building blocks and
a formalized reaction definition (as .smirks or .rxn file). This input is trans-
formed into a highly efficient description of a chemical space (either based
on link compatibility or topology graphs, see below) that can then be searched
either with our CLI tools SpaceLight, SpaceMACS and FTrees or with our Chemi-
cal Space Navigation Platform infiniSee. The spaces are encoded based on for-
malized reactions containing reagents with Lego®-like linkers (Figure 1). This
type of spaces is the only way to access an immeasurably large pool of com-
pounds and find numerous synthesizable analogs. Therefore, CoLibri is a
mandatory toolkit to create your own corporate chemical spaces that can
be searched by fingerprint similarity (SpaceLight, infiniSee’s Analog Hunter),
by pharmacophore-based similarity (FTrees, infiniSee’s Scaffold Hopper) or by
maximum common substructure (SpaceMACS, infiniSee’s Motif Matcher).

CoLibri contains three independent tools that let you

• build combinatorial spaces for FTrees and SpaceMACS (ReactionSynthe-
sizer and FragspaceMerger, see Section 3.3 and 4.3)

• build combinatorial spaces for SpaceLight (SpaceLightDBCreator, see Sec-
tion 5.3)

• enumerate up to 1 million product molecules per reaction (ReactionSyn-
thesizer, see Section 3.4)

• generate fragments for FastGrow databases (ReactionSynthesizer, see
Section 3.5)

• prepare compounds for covalent docking (ReactionSynthesizer, see Sec-
tion 3.5)

To enable chemical space navigation at unparalleled speed on standard hard-
ware, we formalize reactions and encode them as pseudo-linking reactions.
There is a principal difference between ”classical” fragment spaces (”FTrees
spaces”) and topological fragment space databases (”SpaceLight spaces”). For
the classical spaces, the compatibility of the fragments is encoded for every

2

Figure 1: Example reaction (click chemistry and amide coupling) and building blocks serving
as input for the CoLibri toolkit.

reaction, e.g., one single space is created per reaction (see Section 3.3). Mul-
tiple single spaces are finally merged into the final, ”parent” chemical space
(see Section 4.3) containing the overall fragment compatibilities and all frag-
ments (Figure 1, classical space). For topological spaces, one so-called ”topol-
ogy graph” is generated for every reaction and stored in a database (see Sec-
tion 5.3). Every node of this topology graph contains formalized, virtual build-
ing blocks, or as we sometimes call them, ”reaction-fate foreseeing” fragments
(Figure 1, topological fragment space). Despite being processed in different
ways, the input for both classical spaces and topological spaces is the same
(building blocks and reaction definitions, see Figure 1).

3

2 Technical Prerequisites

CoLibri contains three command line tools (ReactionSynthesizer, Fragspace-
Merger and SpacelightDBCreator). The tools need the following to run:

• The CoLibri package
(https://www.biosolveit.de/download/?product=colibri)
Depending on your operating system, some libraries may have to be in-
stalled (get in touch with us: mailto:support@biosolveit.com)

• A shell (Linux/Unix) or a terminal (macOS), or a command line environ-
ment (Windows; e.g.: cmd.exe)

• A valid license (from mailto:license@biosolveit.com)

The license setup instructions will come with the license that we will send out
— or has already been sent out to you. A “test license” that you can request
online and that is sent to you instantaneously can simply be placed next to
the respective executable (e.g. reaction_synthesizer.exe, reaction_synthesizer,
or ReactionSynthesizer — depending on your operating system). For macOS
please read on…

macOS Specialties OnmacOS, the executable will typically reside inside the *.app
package, e.g.:

/Applications/ReactionSynthesizer.app/Contents/MacOS/ReactionSynthesizer

To place the short term test license there, you will have to go into the *.app package
using a right mouse click on *.app in the Finder, and click on “Show package contents”.
In there, you will see the Contents/ subfolder, in there the MacOS subfolder, and in
there, the respective executable. If you are about to use the test license, place it right
there, next to the executable. A longer term license will be handled separately, we will
tell you how when we send out that license to you.

When you call a tool for the first time, go to the Finder, and navigate to the Applications
folder. Do a right(!) click on respective *.app, and — if applicable — confirm that you
want to open the program. It will flash up once, and you are good to go at the terminal
prompt from there on.

4

https://www.biosolveit.de/download/?product=colibri
mailto:support@biosolveit.com
mailto:license@biosolveit.com

3 The ReactionSynthesizer

The ReactionSynthesizer generates a ”space” for a single reaction (single space)
and/or enumerates up to 1 million product molecules for that reaction (see
Section 3.3 and 3.4). It can also be used to prepare compounds for FastGrow
databases or covalent docking (see Section 3.5).

3.1 General

An overview of all command line options is available by calling --help:

./reaction_synthesizer --help

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are *.rxn and

*.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom labels are

used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported file

types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-path] arg Path for the output directory in which generated spaces, enumerated

products and logs are written.
--information arg (=1) Information level in the stats.log output file.

1: Essential information
2: Basic matching information
3: Full matching information

--check-reaction [=arg(=1)] Checks the reaction definition for potential failures. If this check
is activated, the program stops right after the check, no further
steps such as space generation or product enumeration is performed.

-e [--enumerate] arg Products are enumerated if a molecule file name is provided.
Supported file types are *.mol2, *.sdf, *.smi and *.smiles. The
output file is stored under the output-path. The number of products
is limited to 1000000.

-c [--random-products] arg (=0) Enumerate as many random products as specified. Performs full
enumeration (limited to 1000000) when set to 0.
Note: Requires '--enumerate'

-g [--generate-fragspace] [=arg(=1)]
Generate a fragment space for the reaction.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default is to

use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

5

The abbreviated, one-letter options are preceded with one dash - whereas
the longer, named options are preceded with two dashes: --. If an option
needs an argument (arg), you can include or omit the equals sign. Adapt the
command line usage to your operating system and shell.

3.2 Program Options

In this section the individual command line options are described in more de-
tail. The ReactionSynthesizer generates a single space (”per-reaction” space)
for one specific reaction. Multiple single spaces can then be merged into an
overall ”parent” space containing all the fragments from various reactions with
the FragspaceMerger (see Section 4 and example in Section 4.3). Therefore,
the minimal input required to run the ReactionSynthesizer is a reaction defini-
tion file containing a formalized reaction (.smirks or .rxn format) and an input
file containing appropriate building blocks that can be processedwith that very
reaction. A minimal call to generate a single space for a particular reaction
then may look like the following:

./reaction_synthesizer -r <path/reaction.smirks> -i <path/building_blocks.sdf>
-o <path/to/output/directory> -g

–r [––reaction] arg Specify the input reaction file. The file must contain the
formalized reaction either in .smirks or .rxn format. More information on
how to properly formulate a reaction definition can be found in Section 6.

–s [––sma] arg Specify a SMARTS functional group definition file. The file is
only needed if atom labels are used in .rxn files. A pre-compiled file (named
FunctionalGroupLabel.txt) with common functional groups can be found in
the example folder inside the ReactionSynthesizer directory. You may extend
this file depending on your needs. See Section 3.8 for an example and Section
6 for more information.

–i [––input] arg Specify an input file containing building blocks that are suit-
able to be used with the reaction given via the -r option. Supported file types
are .smi, .smiles, .mol, .mol2 and .sdf. The file will be scanned for matching
building blocks for all reagents specified in the reaction file. Only compati-
ble building blocks will be read from the file, incompatible ones are skipped.
Please note: You can specify multiple input files simultaneously by using the

6

-i option multiple times in a row:
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

––input-reagent-1 arg Inputmolecule files explicitly used for reagent 1. The
files should contain only building blockswhichmatch the first reagent specified
in the reaction definition given with -r option. Supported file types are .smi,
.smiles, .mol, .mol2 and .sdf.

––input-reagent-2 arg Inputmolecule files explicitly used for reagent 2. The
files should contain only building blockswhichmatch the second reagent spec-
ified in the reaction definition given with -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-3 arg Inputmolecule files explicitly used for reagent 3. The
files should contain only building blocks which match the third reagent spec-
ified in the reaction definition given with -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-4 arg Inputmolecule files explicitly used for reagent 4. The
files should contain only building blocks which match the fourth reagent spec-
ified in the reaction definition given with -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf.

–p [––protecting-groups] arg With this option you can specify a file con-
taining SMARTS definitions for protecting groups. The file should be a simple
text file containing line-separated SMARTS definitions. If you provide such a
file, the specified protecting groups present in the input building blocks will
be clipped and removed from the generated fragments. Consequently, the
protecting group is also not present in the product molecules. An example
file (named ProtectingGroups.txt) with common protecting groups can be
found in the example folder in the ReactionSynthesizer directory. You may ex-
tend this file depending on your needs. For an example usage, see Section
3.6.

–o [––output-path] arg Specify the path to an output directory to which the
space files (fragment-space-file (.fsf), fragment-link-file (.flf) and fragment-
files (.smi), if -g option is specified), enumerated product molecule file (if -e

7

option is specified) and the log file (stats.log) are written. Please note: If the
directory does not already exist, it will be created.

––information arg(=1) Information level for the stats.log output file. Takes
a number (1-3) as argument:

1 Essential information
2 Basic matching information
3 Full matching information

––check-reaction If specified, the reaction givenwith the -roption is checked
for potential errors. If this option is specified, the program terminates right af-
ter the check. No space generation or product enumeration will be executed
even if the reaction is valid and the -g and -e options are specified. Found
errors will be written to a file named validation.log in the output directory.
Please note: The validation.log file is only generated if errors are found in
the reaction definition file, otherwise no log file will be written.
Example call:
./reaction_synthesizer -r reaction.rxn --check-reaction -o out_dir

–e [––enumerate] arg With this option you can enumerate all product mo-
lecules (limited to 1 million compounds) that can be formed from the input
building blocks with the specified reaction (-r option). Takes a file name as ar-
gument (supported file types are .smi, .smiles, .mol, .mol2 and .sdf). Please
note: You only need to give a name for the file here (with suffix), no path is re-
quired. The file will be written to the output directory specified with the -o
option. See Section 3.4 for an example.

–c [––random-products] arg(=0) Randomly enumerate the specified num-
ber of products. Takes a number as argument. If set to 0, all possible product
molecules will be enumerated (limited to 1 million molecules). Please note:
Requires the -e option to be set. See Section 3.4 for an example.

–g [––generate-fragspace] Generates a fragment space for the provided
reaction (-r option) and building blocks (-i or --input-reagent option). This
will create a fragment-space-file (.fsf), a fragment-label-file (.flf) and the
corresponding fragment-files (.smi) in the directory specified with the -o op-
tion. See Section 3.3 for an example. Please note: The number of generated
fragment-files varies depending on the reaction definition (see -r option).

8

3.3 Example 1: Generating a single space for a reaction

In the example folderwithin the ReactionSynthesizer directory you can find two
example reaction definition files (amidecoupling.smirks and suzuki.smirks)
and a file with suitable building blocks (building_blocks.smi). They cover two
prominent examples of reactions used inMedicinal Chemistry: amide coupling
and Suzuki reaction (see Figure 2). More detailed information on how to prop-
erly formalize reactions for space generation can be found on our website.[2]
To get a first impression on how the ReactionSynthesizer works, simply gener-
ate a single space for the amide coupling reaction. Therefore, on the command
line, navigate into the example folder and run the following:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_single_space -g

Figure 2: Example of an amide reaction (top) and a Suzuki reaction (bottom) covered by
the example reaction definition files and example building blocks.

The above call will create a new directory named amide_single_space within
the example folder to which several output files are written. You can open the
output files with a text editor:

• fragspace_fragments_0.smi: fragment-file. Fragments generated from
the input building blocks for the first reagent (acid). Contains all acid
fragments with linkers.

9

• fragspace_fragments_1.smi: Fragments generated from the input build-
ing blocks for the second reagent (amine). Contains all amine fragments
with linkers.

• amidecoupling.flf: fragment-label-file. Contains information to which
reaction and to which reagent position the fragments belong.

• amidecoupling.fsf: fragment-space-file. Connects information on linker
compatibilities with the corresponding fragment-label-file and fragment-
files.

• stats.log: Contains statistics and details on the applied reaction and
mapping.

Re-run for the Suzuki reaction, this time with additional enumeration of all
product molecules:

../reaction_synthesizer -r suzuki.smirks -i building_blocks.smi
-o suzuki_single_space -g -e suzuki_products.sdf

The output folder suzuki_single_space will now additionally contain one file
named suzuki_products.sdf with all products that could be created from the
input building blocks.

3.4 Example 2: Enumerating product molecules for a reac-
tion

The ReactionSynthesizer can also be used to enumerate product molecules
from building blocks (see also Section 3.3). Simply use the amide coupling
reaction from Example 1 again:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products.sdf

This call will generate an output folder named amide_enum which contains two
files: amide_products.sdf containing all the product molecules that could be
constructed from suitable building blocks in the input file and the stats.log
file with matching information.

It is also possible to randomly enumerate only a specific number of product
molecules with the -c option:

10

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products_random.sdf -c 2

The output SD file amide_products_random.sdf now contains only 2 randomly
enumerated product molecules.

3.5 Example 3: Transformingmolecules for FastGrow data-
bases or covalent docking

You can generate input molecules for FastGrow databases or covalent docking
with the ReactionSynthesizer by formulating a transformation reaction, e.g. the
product molecules must contain a linker (Figure 3). This linker then can serve
as attachment point to a protein residue during covalent docking. The linker
compound can also be added to a FastGrow database. Compounds that do
not carry such a linker cannot be processed by FlexX/FastGrow/SeeSAR, they
need to be pre-processed as described in this section prior to using them for
covalent docking or growing.

On the command-line, navigate into the example folder within the Reaction-
Synthesizer directory. Open the file vinylsulfone_transform.rxnwith a chem-
ical drawing program (Figure 3). This reaction definition may serve as an ex-
ample for the transformation of a compound with a vinylsulfone warhead into
its protein bound state (Figure 3). The product contains a linker (R) which
may serve as the attachment point for a nucleophilic residue during covalent
docking. With this reaction definition, you can now prepare the compounds in
vinylsulfones.sdf for covalent docking:

../reaction_synthesizer -r vinylsulfon_transform.rxn -i vinylsulfones.smi
-o vs_transformed -e vs_transformed.sdf

Figure 3: Example of a reaction definition to transform compounds with a vinylsulfone
warhead into their protein-bound state. The transformed molecule contains a linker (R).

11

The output SD file vs_transformed.sdf contains the transformed compounds.
You can directly use this file to perform covalent docking within SeeSAR or
with FlexX (formore information visit https://www.biosolveit.de/download/
?product=flexx).

As a second example, you can transform somebuilding blockswith a carboxylic
acid as functional group to fragments suitable to be incorporated into Fast-
Grow databases:

../reaction_synthesizer -r acid_transform.rxn -i building_blocks.smi
-o fragments -e fastgrow_fragments.sdf

The file fastgrow_fragments.sdf contains the transformed acids with a linker
(see Figure 4) and can serve as an input file for the FastGrowDBCreator (more
information: https://www.biosolveit.de/download/?product=fastgrow).

Figure 4: Example of acids transformed to fragments with a linker. These fragments can
be directly incorporated into FastGrow databases.

3.6 Example 4: Removing protecting groups from product
molecules

You can remove protecting groups from product molecules. As an example
can serve the compound 1 in Figure 5 that has one Boc-protected amine and
one free primary amine group. This compound can react with its free amine

12

https://www.biosolveit.de/download/?product=flexx
https://www.biosolveit.de/download/?product=flexx
https://www.biosolveit.de/download/?product=fastgrow

group with benzoic acid (2 in Figure 5) to form an amide. Again, on the com-
mand line, navigate into the example folder and execute the following two
calls:

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_uncleaved -e boc_uncleaved.sdf

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_cleaved -e boc_cleaved.sdf
-p ProtectingGroups.txt

The above calls will generate the new folders boc_cleaved and boc_uncleaved
containing the files boc_cleaved.sdf and boc_uncleaved.sdf, respectively.
In Figure 5 the resulting enumerated product molecules are shown for both
cases. When using the -p argument with the file ProtectingGroups.txt, the
Boc group is removed and is not present in the final product 4.

Figure 5: Example product molecule obtained from an amide coupling reaction. 3: without
protecting group removal, 4: with protecting group removal.

3.7 Example 5: Debugging reaction definitions

The ReactionSynthesizer can be used to debug reaction definitions. Formal-
ized reaction definitions quickly get complex, so it is often a good idea to check
for potential errors or ambiguities before generating a space. The example
folder in the ReactionSynthesizer directory contains an example reaction def-
inition file named amidecoupling_error.smirks with a formal error. On the
command-line, navigate into the example folder and execute the following:

13

../reaction_synthesizer -r amidecoupling_error.smirks -o . --check-reaction

The above call will create a file named validation.log in the example folder
with informationwhy the reaction definition is not valid (Missingmapping Label
in product: 3). More on information on how to properly formalize reactions can
be found in Section 6.

3.8 Example 6: Using reactionswith functional group labels

A detailed description on how to define reactions with functional group labels
can be found in Section 6. If you use reaction definitions that contain labels
you have to specify the FunctionalGroupLabel.txt file with the -s option.
The example folder in the ReactionSynthesizer directory contains an example
reaction: esterification_labels.rxn. This is the same reaction definition
that is generated as an example step-by-step in Section 6 (see Figure 11). On
the command line, navigate into the example folder and execute the following:

../reaction_synthesizer -r esterification_labels.rxn -i building_blocks.smi
-o ester_space -e esters.sdf -g
-s FunctionalGroupLabel.txt

This call creates the folder ester_space that contains the space files and the
enumerated products (esters.sdf).

14

4 The FragspaceMerger

The FragspaceMerger is used to merge multiple single reaction spaces gener-
ated with the ReactionSynthesizer (see Section 3 and the example in Section
3.3). The output is a master space containing multiple reaction definitions
along with all corresponding fragments. The output comprises three files: the
merged fragment_label file (.flf), the merged fragment_space file (.fsf) and
the fragment file (.smi). Merging multiple single reaction space files results in
unification of all involved fragments into one file and enhances the encoding
of the fragment compatibilities. This leads to faster runtimes in FTrees and
SpaceMACS searches. Additionally, if you zip the three merged files (e.g using
7zip) you have one chemical space file that is ready to be used with infiniSee,
FTrees and SpaceMACS. You can also re-name the .zip file to .space.

4.1 General

Anoverviewof all command line options is available by calling fragspace_merger
with --help:

./fragspace_merger --help

Program options:
-i [--input-fsf-paths] arg List of paths to the FSF files to merge.

Note: The .flf and fragment files specified in each FSF have to be
in the appropriate relative paths.
Note: Can't be used together with '--input-base-dir'.

-d [--input-base-dir] arg Base directory to search for fragment spaces.
Each sub-directory (within the base) must contain exactly one
'.fsf' and one '.flf' file plus all (at least one) corresponding fragment files.
Note: Can't be used together with '--input-fsf-paths'.

-o [--output-dir] arg Path for the output directory.
-f [--out-file-name] arg Output base file name (without suffix) for the merged flf, fsf

and molecule files.

General options:
-h [--help] Print this help message
--license-info Print license info
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

The abbreviated, one-letter options are preceded with one dash - whereas
the longer, named options are preceded with two dashes: --. If an option
needs an argument (arg), you can include or omit the equals sign. Adapt the
command line usage to your operating system and shell.

15

4.2 Program Options

–i [––input-fsf-paths] arg Specify the path to a .fsf file (a single space gen-
erated with the ReactionSynthesizer, see Section 3 and the example in Section
3.3). Please note: The corresponding .flf file and fragspace-fragment files
(.smi) must be located in the same directory. You can specify multiple .fsf
files to be merged at once by using the option multiple times in a row. This
option cannot be used together with the -d option. See Section 4.3 for an
example.

–d [––input-base-dir] arg Specify a base directory whose subdirectories
should contain every single reaction space (see Section 3) in a separate folder.
Please note: The single space folders must contain the .fsf and .flf file as
well as all associated fragspace-fragment (.smi) files. Please note: This is an
alternative way to merge multiple single spaces. This option cannot be used
together with the -i option. See Section 4.3 for an example.

–o [––output-dir] arg Specify the path to an output directory to which the
merged .fsf, .flf and fragment file (.smi) is written. Please note: If the di-
rectory does not already exist, it is created.

–f [––out-file-name] arg | Specify an output base file name (without suffix)
to be used for the merged .flf, .fsf and fragment (.smi) file.

4.3 Example: Merging two single reaction spaces

You can find the two single spaces which are generated in Example 1 (see
Section 3.3) in the example folder underneath the FragspaceMerger folder.
You can now merge these two single spaces into one ”parent” (master) space:
On the command line, navigate into the example folder within the Fragspace-
Merger directory and execute the following call:

../fragspace_merger -i amide_single_space/amidecoupling.fsf
-i suzuki_single_space/suzuki.fsf
-o merged_space -f parent_space

16

Alternatively, you can also use the -d option to execute the same task:

../fragspace_merger -d . -o merged_space -f parent_space

The above calls will create the output folder merged_space which contains
the three files parent_space.fsf, parent_space.flf and parent_space.smi.
These files can now be used for Feature Tree searches (FTrees CLI tool or Scaf-
fold Hopper in infiniSee). You can also zip the three files and use this file with
FTrees, SpaceMACS and infiniSee (optionally, re-name the file extension from
.zip to .space).
Please note that SpaceLight needs a different space file, as will be discussed
in Section 5.

17

5 The SpaceLightDBCreator

The SpaceLightDBCreator generates topological fragment spaces for the use
with SpaceLight (https://www.biosolveit.de/download/?product=spacelight).
Similar to the ReactionSynthesizer (see Section 3), the SpaceLightDBCreator
takes building blocks and reaction definitions (.smirks or .rxn) as input. The
output is a topological fragment space database (.tfsdb) file.

5.1 General

Anoverviewof all command line options is available by calling spacelight_db_creator
with --help:

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are

*.rxn and *.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom

labels are used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported

file types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-file] arg Topological fragment space file to be written.
-f [--insert-full-molecules] [=arg(=1)]

Insert molecules supplied by --input directly into the created
databse.

--include-macrocycles [=arg(=1)] Single rings with more than 9 ring atoms can be part of fragments and
molecules and can be formed in cyclization reactions.

--protect-space [=arg(=1)] Protect the IP value within the output file.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default

is to use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

The abbreviated, one-letter options are preceded with one dash - whereas
the longer, named options are preceded with two dashes: --. If an option
needs an argument (arg), you can include or omit the equals sign. Adapt the
command line usage to your operating system and shell.

18

https://www.biosolveit.de/download/?product=spacelight

5.2 Program Options

–r [––reaction] arg Specify the input reaction file. The file must contain the
formalized reaction either in .smirks or .rxn format. More information on
how to properly formulate a reaction definition can be found in Section 6.

–s [––sma] arg Specify a SMARTS functional group definition file. The file is
only needed if atom labels are used in .rxn files. A pre-compiled file (named
FunctionalGroupLabel.txt) with common functional groups can be found in
the example folder inside the ReactionSynthesizer directory. You may extend
this file depending on your needs. See Section 6 and 5.3 for more information.

–i [––input] arg | Specify an input file containing building blocks suitable
to be used with the reaction given via the -r option. Supported file types are
.smi, .smiles, .mol, .mol2 and .sdf. The file will be scanned for suitable build-
ing blocks for all reagents specified in the reaction file. Only suitable building
blocks will be read from the file, non-suitable ones are skipped. Please note:
You can specify multiple input files at once by using the -i option multiple
times in a row, e.g.
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

––input-reagent-1 arg Input molecule files explicitly used for reagent 1. If
provided, this file should contain only building blocks which are suitable for
the first reagent specified in the reaction given with -r option. Supported file
types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-2 arg Input molecule files explicitly used for reagent 2. If
provided, this file should contain only building blocks which are suitable for
the second reagent specified in the reaction given with -r option. Supported
file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-3 arg Input molecule files explicitly used for reagent 3. If
provided, this file should contain only building blocks which are suitable for
the third reagent specified in the reaction given with -r option. Supported file
types are .smi, .smiles, .mol, .mol2 and .sdf.

19

––input-reagent-4 arg Input molecule files explicitly used for reagent 4. If
provided, this file should contain only building blocks which are suitable for
the fourth reagent specified in the reaction given with -r option. Supported
file types are .smi, .smiles, .mol, .mol2 and .sdf.

–p [––protecting-groups] arg Specify a file containing SMARTS definitions
for protecting groups. The file should be a simple text file containing line-
separated SMARTS definitions. If you provide such a file, the specified protect-
ing groups present in the input building blocks will be clipped and removed
from the generated fragments. An example file (named ProtectingGroups.txt)
with common protecting groups can be found in the example folder within the
SpaceLightDBCreator directory. See Section 5.3 for more information.

–o [––output-file] arg Specify the path and name of the output file. The
output file is a topological fragment space database (.tfsdb) file. The suffix
(.tfsdb) is required. Please note: You can write topology graphs from different
reactions step-wise into a single database. See the example in Section 5.3.

–f [––insert-full-molecules] Insert the compounds in the input file (speci-
fied with the -i option) as ”full molecules” directly into the database (no frag-
ment and topology graph generation). This is especially useful if you want to
add molecules to the database which cannot be constructed from the reac-
tions of the space.

––include-macrocycles Allows the incorporation and formation of macro-
cyclic compounds in the database, e.g. compounds containing single rings
with more than 9 ring atoms. Macrocycles are allowed to be part of a building
block (given by -i or --input-reagent option) and can be formed as a product
of a reaction (given by -r option), i.e. if this option is set, products containing
single rings with more than 9 ring atoms can be formed via cyclization reac-
tions.

––protect-space Protects the IP value in the output .tfsdb database file.
Encrypts the structure and name of molecules in the database. Please note:
Adding further topologies to a protected database (see the example in Section
5.3) always requires the --protect-space option be set.

20

5.3 Example: Creating a topological fragment spacedatabase

On the command-line, navigate into the example folder within the SpaceLight-
DBCreator directory. Here you can find two example reaction definition files
(named amidecoupling.smirks and suzuki.smirks) and a file with suitable
building blocks (building_blocks.smi). They cover two prominent examples
of reactions used in Medicinal Chemistry: amide coupling and Suzuki reaction
(see Figure 2). More information on how to properly formalize reactions for
space generation can be found on our website.[2][3] First, you can use the
amide reaction to create a new database:

../spacelight_db_creator -r amidecoupling.smirks -i building_blocks.smi
-o topo_space.tfsdb

This call will create a new database file named topo_space.tfsdb within the
example folder.
Next, simply add the topology graph for the Suzuki reaction to the existing
database:

../spacelight_db_creator -r suzuki.smirks -i building_blocks.smi
-o topo_space.tfsdb

You can repeat this process for multiple reactions and their associated build-
ing blocks. We recommend to automate this process using shell or python
scripts. For paying customers, we have pre-compiled workflow scripts to facil-
itate space generation for multiple reactions. Please get in touch with us, and
we can provide you with the scripts and assistance.

Similar to the example in Section 3.6, you can also cleave protecting groups
from products:

../spacelight_db_creator -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_cleaved.tfsdb -p ProtectingGroups.txt

Similar to the example in Section 3.8, you can also use functional group labels
in reaction definitions:

../spacelight_db_creator -r esterification_labels.rxn -i building_blocks.smi
-o ester_space.tfsdb -s FunctionalGroupLabel.txt

More information on defining reaction definitions with functional group labels
can be found in Section 6.

21

Topological fragment space database files can be directly searchedwith Space-
Light (for more information on SpaceLight visit https://www.biosolveit.de/
download/?product=spacelight). You can also put the .tfsdb file in a zip con-
tainer (e.g. together with the merged ”classical” fragment space files, see the
example in Section 4.3) and use this single zip file comfortably with all modes
of infiniSee and all command line search tools.

22

https://www.biosolveit.de/download/?product=spacelight
https://www.biosolveit.de/download/?product=spacelight

6 Prepare Reaction Definitions for Space Gener-
ation

The ReactionSynthesizer and SpaceLightDBCreator need precise reaction def-
initions as input to generate spaces with meaningful chemistry. Reaction def-
initions in RXN or SMIRKS format are accepted. The generation of Reaction-
SMARTS/SMIRKS may be assisted by tools like the SMARTSEditor and SMARTS
PLUS webserver (https://smarts.plus/) that are able to visualize SMARTS
expressions.[1]

However, the most intuitive way to generate formalized reaction definitions is
to sketch a reaction with a chemical drawing program and export it as .rxn
file. In the following, MarvinSketch is used as an example, but other sketchers
(ChemDraw etc.) can be used in a comparable way. The first step is to simply
draw a reaction. It is often sufficient to draw only the functional groups that
react with each other, as illustrated for the esterification A in Figure 6. The
sketched molecules are interpreted as substructures, so esterification A will
be more generic than esterification B. If you draw aromatic rings, make sure
that the bond type for all ring bonds is set to aromatic.

Figure 6: Examples of drawing an esterfication reaction. Variant A is more generic than
variant B.

Let’s continue with the more generic esterification A. As a second step, you
must assignmapping numbers for all atoms that are present on both the prod-
uct and the educt side. Therefore, right-click on an atom on the educt side,
select ”Map” from the context menu and assign a number. Now, right-click
on the related atom in the product molecule and assign the same mapping
number to it. It is important that all related atoms on educt and product side
have a common unique mapping number (see Figure 7)! In this example, the
OH-atom in the educt acid must not get a mapping number because it is not

23

https://smarts.plus/

Figure 7: Adding mapping numbers for every related atom pair on educt and product side.

present in the product molecule. It will be removed during the reaction (leav-
ing group).

Figure 8: Example of products and artifacts generated with an imprecise reaction definition.

At this stage, the reaction is in principle properly defined to be used with Re-
actionSynthesizer and SpaceLightDBCreator. However, the reaction definition
is not as precise as it should be to avoid unwanted products and artifacts.
This should be illustrated with the building blocks in Figure 8. Product 1 is a
desired product of the esterification reaction. Product 3 is chemically invalid
and products 2 and 4were not intended to be formed with this reaction defini-
tion. It is therefore crucial to define the chemical environment of the functional

24

Figure 9: Adding SMARTS definitions to an atom to define its chemical environment with
MarvinSketch. 1. Click on the ”periodic table” | 2. Got to the ”Advanced” tab. | 3. Choose
”SMARTS” as custom property type. | 4. Enter the SMARTS definition. | 5. (not shown) Close
the periodic table window and assign the SMARTS by clicking on the desired atom (in case of
our example the oxygen atom of the educt alcohol).

group atoms as precise as possible. This can be achieved by using recursive
SMARTS definitions. It is important that the SMARTS definitions only match ex-
actly one atom. This can be best illustrated for a SMARTS that precisely defines
the oxygen atom of the educt alcohol: [OD1;$(O-[#6;!$(C=[O,N,S])])]. This
SMARTS matches an oxygen atom that has only one heavy atom as neighbor
(OD1) and this neighbor atommust be a carbon atom that is not allowed to have
a double bond to oxygen, sulfur or nitrogen ($(O-[#6;!$(C=[O,N,S])])). You
can assign the SMARTS to the oxygen atom of the educt alcohol as shown and
described in Figure 9. This eliminates products 3 and 4. To also eliminate prod-
uct 2, the carboxyl group of the educt acid has to be defined properly. One
possibility is to precisely define the environment of the central carbon (car-
bonyl carbon) of the carboxyl group: [C$(C(=[OD1])([OD1])[#6,#1])]. This
SMARTS pattern only matches the carbonyl carbon of carboxylic acids, but not
of esters.

25

Now we have generated a very precise reaction definition for an esterifica-
tion between a carboxylic acid and an alcohol. As a final step, just export the
reaction as .rxn file (make sure to select MDL Rxnfile, do not use MDL Ex-
tended Rxnfile) and specify this file with the -r option of ReactionSynthesizer
and SpaceLightDBCreator (see examples in Sections 3 and 5).

Figure 10: Adding labels to an atom with MarvinSketch. 1. Click on the ”periodic table” |
2. Got to the ”Advanced” tab. | 3. Choose ”Value” as custom property type. | 4. Enter the
label. | 5. (not shown) Close the periodic table window and assign the label by clicking on
the desired atom (in case of our example the oxygen atom of the educt alcohol).

Alternatively to use SMARTS to properly define functional groups in reaction
definitions you can also use “labels”, which are simply pre-defined SMARTS-
patterns that make the drawing more easily human-readable. You can find
pre-defined SMARTS patterns and their associated human-readable labels in
the FunctionalGroupLabel.txt file in the example folder inside the Reaction-
Synthesizer or SpaceLightDBCreator repository folder. Instead of directly as-

26

signing a SMARTS to an atom of the functional group simply assign the cor-
responding label specified in the file. This can be done with Marvin Sketch
in comparable manner (see Figure 10 and compare to Figure 9). The atom
of the functional group to which the label must be added is described in the
comment column of the file. For our example, you have to assign the label
”Alcohol” to the oxygen of the alcohol group and the label ”CarboxylicAcid” to
the central carbon (carbonyl carbon) of the carboxyl group (see Figure 11).

Figure 11: Esterification reaction with functional group labels.

If you use reaction definitions with labels always make sure to specify the
FunctionalGroupLabel.txt file via the -s / --sma option (see Section 3.8
and 5.3 for examples).

27

7 General Options

This section describes the general options which are identical for all CoLibri
tools.

–h [––help] Displays the command line help with short descriptions for
every argument option.

––license-info Shows detailed information about the license setup you cur-
rently use. If you have any problemswith your license, send an email to mailto:
support@biosolveit.com and include this information.

––thread-count arg Specifies the maximum number of threads used by the
tool. By default, all available logical cores of your computer are used. You may
want to reduce the number of threads if you want to run other computations
on your computer at the same time, or if you share the compute resource.

––version Displays information on the version of the respective tool on the
command line. In quoting the tool, please mention this version number.

–v [––verbosity] arg Sets the verbosity level, e.g., the level of console out-
put, with an integer argument. The default value is 2. The following options
are available:

0 Silent. No messages will be displayed in the console during the run. Er-
rors will be ignored whenever possible.

1 Error. Only error messages will be displayed.

2 Warning. The default setting, warnings and error messages will be dis-
played.

3 Workflow. In addition to errors and warnings, information on the differ-
ent steps are displayed on the command line.

4 Steps. In addition to the ’Workflow’ option, the progress of each step is
displayed in detail.

28

mailto:support@biosolveit.com
mailto:support@biosolveit.com

8 Further Reading, References

Additional information about CoLibri is available at https://www.biosolveit.
de/products/#CoLibri.

Complementary tools, e.g. the command line search tools FTrees, SpaceMACS
and SpaceLight as well as the Chemical Space Navigation Platform infiniSee,
can be obtained from the BioSolveIT website (https://biosolveit.com).

References

[1] https://www.biosolveit.de/academic-drug-discovery/.

[2] https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_
implementation-of-reactions.pdf.

[3] https://www.biosolveit.de/wp-content/uploads/2022/02/
BeginnersGuide_SMARTSeditor.pdf.

We wish you great success and much joy with CoLibri!

29

https://www.biosolveit.de/products/#CoLibri
https://www.biosolveit.de/products/#CoLibri
https://biosolveit.com
https://www.biosolveit.de/academic-drug-discovery/
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf

	Introduction
	Technical Prerequisites
	The ReactionSynthesizer
	General
	Program Options
	Example 1: Generating a single space for a reaction
	Example 2: Enumerating product molecules for a reaction
	Example 3: Transforming molecules for FastGrow databases or covalent docking
	Example 4: Removing protecting groups from product molecules
	Example 5: Debugging reaction definitions
	Example 6: Using reactions with functional group labels

	The FragspaceMerger
	General
	Program Options
	Example: Merging two single reaction spaces

	The SpaceLightDBCreator
	General
	Program Options
	Example: Creating a topological fragment space database

	Prepare Reaction Definitions for Space Generation
	General Options
	Further Reading, References

