
CoLibri Command Line Documentation
Version 8.3

Sascha Jung, Raphael Klein & Marcus Gastreich

August 19, 2024

©2024 BioSolveIT. All rights reserved.

Contents
1 Introduction 2

2 Technical Prerequisites 3

3 The ReactionSynthesizer 4
3.1 General . 4
3.2 Program Options . 5
3.3 Example 1: Generating a single space for a reaction . 7
3.4 Example 2: Enumerating product molecules for a reaction . 8
3.5 Example 3: Transforming molecules for FastGrow databases or covalent docking 8
3.6 Example 4: Removing protecting groups from product molecules . 10
3.7 Example 5: Debugging reaction definitions . 10
3.8 Example 6: Using reactions with functional group labels . 11

4 The FragspaceMerger 12
4.1 General . 12
4.2 Program Options . 12
4.3 Example: Merging two single reaction spaces . 13

5 The SpaceLightDBCreator 14
5.1 General . 14
5.2 Program Options . 14
5.3 Example: Creating a topological fragment space database . 16

6 Prepare Reaction Definitions for Space Generation 17

7 General Options 21

8 Further Reading, References 22

1 Introduction

All links, references, table of contents lines etc. in this document are clickable.

Please note that this toolkit is a command line package.

CoLibri is a toolkit containing three separate command line (CLI) tools (React-ionSynthesizer, Fragspace-
Merger and SpaceLightDBCreator) to create combinatorial chemical spaces (”fragment spaces” or ”topo-
logical fragment spaces”) of multi-billion size and beyond. As input, the tools take building blocks and a
formalized reaction definition (as .smirks or .rxn file). This input is transformed into a highly efficient
description of a chemical space (either based on link compatibility or topology graphs, see below) that
can then be searched either with our CLI tools SpaceLight, SpaceMACS and FTrees or with our Chemical
Space Navigation Platform infiniSee. The spaces are encoded based on formalized reactions containing
reagents with Lego®-like linkers (Figure 1). This type of spaces is the only way to access an immeasurably
large pool of compounds and find numerous synthesizable analogs. Therefore, CoLibri is a mandatory
toolkit to create your own corporate chemical spaces that can be searched by fingerprint similarity
(SpaceLight, infiniSee’s Analog Hunter), by pharmacophore-based similarity (FTrees, infiniSee’s Scaffold
Hopper) or by maximum common substructure (SpaceMACS, infiniSee’s Motif Matcher).

CoLibri contains three independent tools that let you

• build combinatorial spaces for FTrees and SpaceMACS (ReactionSynthesizer and FragspaceMerger,
see Section 3.3 and 4.3)

• build combinatorial spaces for SpaceLight (SpaceLightDBCreator, see Section 5.3)

• enumerate up to 1 million product molecules per reaction (ReactionSynthesizer, see Section 3.4)

• generate fragments for FastGrow databases (ReactionSynthesizer, see Section 3.5)

• prepare compounds for covalent docking (ReactionSynthesizer, see Section 3.5)

To enable chemical space navigation at unparalleled speed on standard hardware, we formalize reac-
tions and encode them as pseudo-linking reactions. There is a principal difference between ”classical”
fragment spaces (”FTrees spaces”) and topological fragment space databases (”SpaceLight spaces”). For
the classical spaces, the compatibility of the fragments is encoded for every reaction, e.g., one single
space is created per reaction (see Section 3.3). Multiple single spaces are finally merged into the final,
”parent” chemical space (see Section 4.3) containing the overall fragment compatibilities and all frag-
ments (Figure 1, classical space). For topological spaces, one so-called ”topology graph” is generated
for every reaction and stored in a database (see Section 5.3). Every node of this topology graph contains
formalized, virtual building blocks, or as we sometimes call them, ”reaction-fate foreseeing” fragments
(Figure 1, topological fragment space).

Despite being processed in different ways, the input to generate both classical spaces and topological
spaces is the same (see Figure 1). All you need are building blocks or synthons and appropriate reaction
definitions that combine the building blocks to virtual molecules in a chemically meaningful way (see
Section 6). From this input, the CoLibri tools can create optimized combinatorial fragment spaces con-
taining trillions of virtual molecules and more that can be searched in seconds to minutes on modest
hardware.

2

Figure 1: Example reaction (click chemistry and amide coupling) and building blocks serving as input for the CoLibri
toolkit.

2 Technical Prerequisites

CoLibri contains three command line tools (ReactionSynthesizer, FragspaceMerger and SpacelightDB-
Creator). The tools need the following to run:

• The CoLibri package
(https://www.biosolveit.de/download/?product=colibri)
Depending on your operating system, some libraries may have to be installed (get in touch with
us: mailto:support@biosolveit.com)

• A shell (Linux/Unix) or a terminal (macOS), or a command line environment (Windows; e.g.: cmd.exe)

• A valid license (from mailto:license@biosolveit.com)

The license setup instructions will come with the license that we will send out — or has already been
sent out to you. A “test license” that you can request online and that is sent to you instantaneously can
simply be placed next to the respective executable (e.g. reaction_synthesizer.exe, reaction_synthesizer,
or ReactionSynthesizer — depending on your operating system). For macOS please read on…

macOS Specialties On macOS, the executable will typically reside inside the *.app package, e.g.:

/Applications/ReactionSynthesizer.app/Contents/MacOS/ReactionSynthesizer

To place the short term test license there, you will have to go into the *.app package using a right mouse click on
*.app in the Finder, and click on “Show package contents”. In there, you will see the Contents/ subfolder, in there
the MacOS subfolder, and in there, the respective executable. If you are about to use the test license, place it
right there, next to the executable. A longer term license will be handled separately, we will tell you how when we
send out that license to you.

When you call a tool for the first time, go to the Finder, and navigate to the Applications folder. Do a right(!) click
on respective *.app, and — if applicable — confirm that you want to open the program. It will flash up once, and
you are good to go at the terminal prompt from there on.

3

https://www.biosolveit.de/download/?product=colibri
mailto:support@biosolveit.com
mailto:license@biosolveit.com

3 The ReactionSynthesizer

The ReactionSynthesizer generates a ”space” for a single reaction (single space) and/or enumerates up
to 1 million product molecules for that reaction (see Section 3.3 and 3.4). It can also be used to prepare
compounds for FastGrow databases or covalent docking (see Section 3.5).

3.1 General

An overview of all command line options is available by calling --help:

./reaction_synthesizer --help

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are *.rxn and

*.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom labels are

used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported file

types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-path] arg Path for the output directory in which generated spaces, enumerated

products and logs are written.
--information arg (=1) Information level in the stats.log output file.

1: Essential information
2: Basic matching information
3: Full matching information

--check-reaction [=arg(=1)] Checks the reaction definition for potential failures. If this check
is activated, the program stops right after the check, no further
steps such as space generation or product enumeration is performed.

-e [--enumerate] arg Products are enumerated if a molecule file name is provided.
Supported file types are *.mol2, *.sdf, *.smi and *.smiles. The
output file is stored under the output-path. The number of products
is limited to 1000000.

-c [--random-products] arg (=0) Enumerate as many random products as specified. Performs full
enumeration (limited to 1000000) when set to 0.
Note: Requires '--enumerate'

-g [--generate-fragspace] [=arg(=1)]
Generate a fragment space for the reaction.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default is to

use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

The abbreviated, one-letter options are preceded with one dash - whereas the longer, named options
are preceded with two dashes: --. If an option needs an argument (arg), you can include or omit the
equals sign. Adapt the command line usage to your operating system and shell.

4

3.2 Program Options

In this section the individual command line options are described in more detail. The ReactionSynthe-
sizer generates a single space (”per-reaction” space) for one specific reaction. Multiple single spaces can
then be merged into an overall ”parent” space containing all the fragments from various reactions with
the FragspaceMerger (see Section 4 and example in Section 4.3). Therefore, the minimal input required
to run the ReactionSynthesizer is a reaction definition file containing a formalized reaction (.smirks or
.rxn format) and an input file containing appropriate building blocks that can be processed with that
very reaction. A minimal call to generate a single space for a particular reaction then may look like the
following:

./reaction_synthesizer -r <path/reaction.smirks> -i <path/building_blocks.sdf>
-o <path/to/output/directory> -g

–r [––reaction] arg Specify the input reaction file. The file must contain the formalized reaction
either in .smirks or .rxn format. More information on how to properly formulate a reaction definition
can be found in Section 6.

–s [––sma] arg Specify a SMARTS functional group definition file. The file is only needed if atom
labels are used in .rxn files. A pre-compiled file (named FunctionalGroupLabel.txt) with common
functional groups can be found in the example folder inside the ReactionSynthesizer directory. You
may extend this file depending on your needs. See Section 3.8 for an example and Section 6 for more
information.

–i [––input] arg Specify an input file containing building blocks that are suitable to be used with
the reaction given via the -r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.
The file will be scanned for matching building blocks for all reagents specified in the reaction file. Only
compatible building blocks will be read from the file, incompatible ones are skipped. Please note: You
can specify multiple input files simultaneously by using the -i option multiple times in a row:
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

––input-reagent-1 arg Input molecule files explicitly used for reagent 1. The files should contain only
building blocks which match the first reagent specified in the reaction definition given with -r option.
Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-2 arg Input molecule files explicitly used for reagent 2. The files should contain only
building blocks whichmatch the second reagent specified in the reaction definition given with -r option.
Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-3 arg Input molecule files explicitly used for reagent 3. The files should contain only
building blocks which match the third reagent specified in the reaction definition given with -r option.
Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-4 arg Input molecule files explicitly used for reagent 4. The files should contain only
building blocks which match the fourth reagent specified in the reaction definition given with -r option.
Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

5

–p [––protecting-groups] arg With this option you can specify a file containing SMARTS definitions
for protecting groups. The file should be a simple text file containing line-separated SMARTS defini-
tions. If you provide such a file, the specified protecting groups present in the input building blocks
will be clipped and removed from the generated fragments. Consequently, the protecting group is also
not present in the product molecules. An example file (named ProtectingGroups.txt) with common
protecting groups can be found in the example folder in the ReactionSynthesizer directory. You may
extend this file depending on your needs. For an example usage, see Section 3.6.

–o [––output-path] arg Specify the path to an output directory to which the space files (fragment-
space-file (.fsf), fragment-link-file (.flf) and fragment-files (.smi), if -g option is specified), enumerated
product molecule file (if -e option is specified) and the log file (stats.log) are written. Please note: If
the directory does not already exist, it will be created.

––information arg(=1) Information level for the stats.log output file. Takes a number (1-3) as argu-
ment:

1 Essential information
2 Basic matching information
3 Full matching information

––check-reaction If specified, the reaction given with the -r option is checked for potential errors. If
this option is specified, the program terminates right after the check. No space generation or product
enumeration will be executed even if the reaction is valid and the -g and -e options are specified.
Found errors will be written to a file named validation.log in the output directory. Please note: The
validation.log file is only generated if errors are found in the reaction definition file, otherwise no log
file will be written.
Example call:
./reaction_synthesizer -r reaction.rxn --check-reaction -o out_dir

–e [––enumerate] arg With this option you can enumerate all productmolecules (limited to 1million
compounds) that can be formed from the input building blocks with the specified reaction (-r option).
Takes a file name as argument (supported file types are .smi, .smiles, .mol, .mol2 and .sdf). Please
note: You only need to give a name for the file here (with suffix), no path is required. The file will be
written to the output directory specified with the -o option. See Section 3.4 for an example.

–c [––random-products] arg(=0) Randomly enumerate the specified number of products. Takes a
number as argument. If set to 0, all possible product molecules will be enumerated (limited to 1 million
molecules). Please note: Requires the -e option to be set. See Section 3.4 for an example.

–g [––generate-fragspace] Generates a fragment space for the provided reaction (-r option) and
building blocks (-ior --input-reagentoption). This will create a fragment-space-file (.fsf), a fragment-
label-file (.flf) and the corresponding fragment-files (.smi) in the directory specified with the -o option.
See Section 3.3 for an example. Please note: The number of generated fragment-files varies depending
on the reaction definition (see -r option).

6

3.3 Example 1: Generating a single space for a reaction

In the example folder within the ReactionSynthesizer directory you can find two example reaction
definition files (amidecoupling.smirks and suzuki.smirks) and a file with suitable building blocks
(building_blocks.smi). They cover two prominent examples of reactions used in Medicinal Chem-
istry: amide coupling and Suzuki reaction (see Figure 2). More detailed information on how to properly
formalize reactions for space generation can be found on our website.[2] To get a first impression on
how the ReactionSynthesizer works, simply generate a single space for the amide coupling reaction.
Therefore, on the command line, navigate into the example folder and run the following:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_single_space -g

Figure 2: Example of an amide reaction (top) and a Suzuki reaction (bottom) covered by the example reaction definition
files and example building blocks.

The above call will create a new directory named amide_single_space within the example folder to
which several output files are written. You can open the output files with a text editor:

• fragspace_fragments_0.smi: fragment-file. Fragments generated from the input building blocks
for the first reagent (acid). Contains all acid fragments with linkers.

• fragspace_fragments_1.smi: Fragments generated from the input building blocks for the second
reagent (amine). Contains all amine fragments with linkers.

• amidecoupling.flf: fragment-label-file. Contains information to which reaction and to which
reagent position the fragments belong.

• amidecoupling.fsf: fragment-space-file. Connects information on linker compatibilities with the
corresponding fragment-label-file and fragment-files.

• stats.log: Contains statistics and details on the applied reaction and mapping.

7

Re-run for the Suzuki reaction, this time with additional enumeration of all product molecules:

../reaction_synthesizer -r suzuki.smirks -i building_blocks.smi
-o suzuki_single_space -g -e suzuki_products.sdf

The output folder suzuki_single_space will now also contain one file named suzuki_products.sdf
with all products that could be created from the input building blocks.

3.4 Example 2: Enumerating product molecules for a reaction

The ReactionSynthesizer can also be used to enumerate product molecules from building blocks (see
also Section 3.3). Simply use the amide coupling reaction from Example 1 again:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products.sdf

This call will generate an output folder named amide_enumwhich contains two files: amide_products.sdf
containing all the product molecules that could be constructed from suitable building blocks in the in-
put file and the stats.log file with matching information.

It is also possible to randomly enumerate only a specific number of product molecules with the -c
option:

../reaction_synthesizer -r amidecoupling.smirks -i building_blocks.smi
-o amide_enum -e amide_products_random.sdf -c 2

The output SD file amide_products_random.sdf now contains only 2 randomly enumerated product
molecules.

3.5 Example 3: Transforming molecules for FastGrow databases or covalent
docking

You can generate input molecules for FastGrow databases or covalent docking with the ReactionSyn-
thesizer by formulating a transformation reaction, e.g. the product molecules must contain a linker
(Figure 3). This linker then can serve as attachment point to a protein residue during covalent docking.
The linker compound can also be added to a FastGrow database. Compounds that do not carry such
a linker cannot be processed by FlexX/FastGrow/SeeSAR, they need to be pre-processed as described
in this section prior to using them for covalent docking or growing.

On the command-line, navigate into the example folder within the ReactionSynthesizer directory. Open
the file vinylsulfone_transform.rxn with a chemical drawing program (Figure 3). This reaction defini-
tion may serve as an example for the transformation of a compound with a vinylsulfone warhead into
its protein bound state (Figure 3). The product contains a linker (R) which may serve as the attachment
point for a nucleophilic residue during covalent docking. With this reaction definition, you can now
prepare the compounds in vinylsulfones.sdf for covalent docking:

../reaction_synthesizer -r vinylsulfon_transform.rxn -i vinylsulfones.smi
-o vs_transformed -e vs_transformed.sdf

8

Figure 3: Example of a reaction definition to transform compounds with a vinylsulfone warhead into their protein-bound
state. The transformed molecule contains a linker (R).

The output SD file vs_transformed.sdf contains the transformed compounds. You can directly use
this file to perform covalent docking within SeeSAR or with FlexX (for more information visit https:
//www.biosolveit.de/download/?product=flexx).

As a second example, you can transform some building blocks with a carboxylic acid as functional group
to fragments suitable to be incorporated into FastGrow databases:

../reaction_synthesizer -r acid_transform.rxn -i building_blocks.smi
-o fragments -e fastgrow_fragments.sdf

The file fastgrow_fragments.sdf contains the transformed acids with a linker (see Figure 4) and can
serve as an input file for the FastGrowDBCreator (more information: https://www.biosolveit.de/
download/?product=fastgrow).

Figure 4: Example of acids transformed to fragments with a linker. These fragments can be directly incorporated into
FastGrow databases.

9

https://www.biosolveit.de/download/?product=flexx
https://www.biosolveit.de/download/?product=flexx
https://www.biosolveit.de/download/?product=fastgrow
https://www.biosolveit.de/download/?product=fastgrow

3.6 Example 4: Removing protecting groups from product molecules

You can remove protecting groups from product molecules. As an example can serve the compound
1 in Figure 5 that has one Boc-protected amine and one free primary amine group. This compound
can react with its free amine group with benzoic acid (2 in Figure 5) to form an amide. Again, on the
command line, navigate into the example folder and execute the following two calls:

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_uncleaved -e boc_uncleaved.sdf

../reaction_synthesizer -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_cleaved -e boc_cleaved.sdf
-p ProtectingGroups.txt

The above calls will generate the new folders boc_cleaved and boc_uncleaved containing the files
boc_cleaved.sdf and boc_uncleaved.sdf, respectively. In Figure 5 the resulting enumerated product
molecules are shown for both cases. When using the -p argument with the file ProtectingGroups.txt,
the Boc group is removed and is not present in the final product 4.

Figure 5: Example product molecule obtained from an amide coupling reaction. 3: without protecting group removal,
4: with protecting group removal.

3.7 Example 5: Debugging reaction definitions

The ReactionSynthesizer can be used to debug reaction definitions. Formalized reaction definitions
quickly get complex, so it is often a good idea to check for potential errors or ambiguities before gen-
erating a space. The example folder in the ReactionSynthesizer directory contains an example reaction
definition file named amidecoupling_error.smirks with a formal error. On the command-line, navi-
gate into the example folder and execute the following:

../reaction_synthesizer -r amidecoupling_error.smirks -o . --check-reaction

The above call will create a file named validation.log in the example folder with information why the
reaction definition is not valid (Missing mapping Label in product: 3). More on information on how to
properly formalize reactions can be found in Section 6.

10

3.8 Example 6: Using reactions with functional group labels

A detailed description on how to define reactions with functional group labels can be found in Section
6. If you use reaction definitions that contain labels you have to specify the FunctionalGroupLabel.txt
file with the -s option. The example folder in the ReactionSynthesizer directory contains an example
reaction: esterification_labels.rxn. This is the same reaction definition that is generated as an
example step-by-step in Section 6 (see Figure 11). On the command line, navigate into the example
folder and execute the following:

../reaction_synthesizer -r esterification_labels.rxn -i building_blocks.smi
-o ester_space -e esters.sdf -g
-s FunctionalGroupLabel.txt

This call creates the folder ester_space that contains the space files and the enumerated products
(esters.sdf).

11

4 The FragspaceMerger

The FragspaceMerger is used tomergemultiple single reaction spaces generated with the ReactionSyn-
thesizer (see Section 3 and the example in Section 3.3). The output is a master space containing multi-
ple reaction definitions along with all corresponding fragments. The output comprises three files: the
merged fragment_label file (.flf), the merged fragment_space file (.fsf) and the fragment file (.smi).
Merging multiple single reaction space files results in unification of all involved fragments into one file
and enhances the encoding of the fragment compatibilities. This leads to faster runtimes in FTrees and
SpaceMACS searches. Additionally, if you zip the three merged files (e.g using 7zip) you have one chem-
ical space file that is ready to be used with infiniSee, FTrees and SpaceMACS. You can also re-name the
.zip file to .space.

4.1 General

An overview of all command line options is available by calling fragspace_merger with --help:

./fragspace_merger --help

Program options:
-i [--input-fsf-paths] arg List of paths to the FSF files to merge.

Note: The .flf and fragment files specified in each FSF have to be
in the appropriate relative paths.
Note: Can't be used together with '--input-base-dir'.

-d [--input-base-dir] arg Base directory to search for fragment spaces.
Each sub-directory (within the base) must contain exactly one
'.fsf' and one '.flf' file plus all (at least one) corresponding fragment files.
Note: Can't be used together with '--input-fsf-paths'.

-o [--output-dir] arg Path for the output directory.
-f [--out-file-name] arg Output base file name (without suffix) for the merged flf, fsf

and molecule files.

General options:
-h [--help] Print this help message
--license-info Print license info
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

The abbreviated, one-letter options are preceded with one dash - whereas the longer, named options
are preceded with two dashes: --. If an option needs an argument (arg), you can include or omit the
equals sign. Adapt the command line usage to your operating system and shell.

4.2 Program Options

–i [––input-fsf-paths] arg Specify the path to a .fsf file (a single space generated with the Reac-
tionSynthesizer, see Section 3 and the example in Section 3.3). Please note: The corresponding .flf
file and fragspace-fragment files (.smi) must be located in the same directory. You can specify multiple
.fsf files to be merged at once by using the option multiple times in a row. This option cannot be used
together with the -d option. See Section 4.3 for an example.

–d [––input-base-dir] arg Specify a base directory whose subdirectories should contain every single
reaction space (see Section 3) in a separate folder. Please note: The single space folders must contain
the .fsf and .flf file as well as all associated fragspace-fragment (.smi) files. Please note: This is
an alternative way to merge multiple single spaces. This option cannot be used together with the -i
option. See Section 4.3 for an example.

12

–o [––output-dir] arg Specify the path to an output directory to which the merged .fsf, .flf and
fragment file (.smi) is written. Please note: If the directory does not already exist, it is created.

–f [––out-file-name] arg | Specify an output base file name (without suffix) to be used for themerged
.flf, .fsf and fragment (.smi) file.

4.3 Example: Merging two single reaction spaces

You can find the two single spaces which are generated in Example 1 (see Section 3.3) in the example
folder underneath the FragspaceMerger folder. You can now merge these two single spaces into one
”parent” (master) space: On the command line, navigate into the example folder within the Fragspace-
Merger directory and execute the following call:

../fragspace_merger -i amide_single_space/amidecoupling.fsf
-i suzuki_single_space/suzuki.fsf
-o merged_space -f parent_space

Alternatively, you can also use the -d option to execute the same task:

../fragspace_merger -d . -o merged_space -f parent_space

The above calls will create the output folder merged_spacewhich contains the three files parent_space.fsf,
parent_space.flf and parent_space.smi. These files can now be used for Feature Tree searches
(FTrees CLI tool or Scaffold Hopper in infiniSee). You can also zip the three files and use this file with
FTrees, SpaceMACS and infiniSee (optionally, re-name the file extension from .zip to .space).
Please note that SpaceLight needs a different space file, as will be discussed in Section 5.

13

5 The SpaceLightDBCreator

The SpaceLightDBCreator generates topological fragment spaces for the use with SpaceLight (https://
www.biosolveit.de/download/?product=spacelight). Similar to the ReactionSynthesizer (see Section
3), the SpaceLightDBCreator takes building blocks and reaction definitions (.smirks or .rxn) as input.
The output is a topological fragment space database (.tfsdb) file.

5.1 General

An overview of all command line options is available by calling spacelight_db_creator with --help:

Program options:
-r [--reaction] arg Input reaction definition file. Supported file types are

*.rxn and *.smirks.
-s [--sma] arg SMARTS functional group definition file. Needed if atom

labels are used in RXN reactions.
-i [--input] arg Input molecule files to be searched for reagents. Supported

file types are *.smi, *.smiles, *.mol, *.mol2 and *.sdf.
--input-reagent-1 arg Optional input molecule files explicitly used for reagent 1.
--input-reagent-2 arg Optional input molecule files explicitly used for reagent 2.
--input-reagent-3 arg Optional input molecule files explicitly used for reagent 3.
--input-reagent-4 arg Optional input molecule files explicitly used for reagent 4.
-p [--protecting-groups] arg Input file with protecting groups SMARTS to be removed after

clipping.
-o [--output-file] arg Topological fragment space file to be written.
-f [--insert-full-molecules] [=arg(=1)]

Insert molecules supplied by --input directly into the created
databse.

--include-macrocycles [=arg(=1)] Single rings with more than 9 ring atoms can be part of fragments and
molecules and can be formed in cyclization reactions.

--protect-space [=arg(=1)] Protect the IP value within the output file.

General options:
-h [--help] Print this help message
--license-info Print license info
--thread-count arg Maximum number of threads used for calculations. The default

is to use all available cores.
--version Print version info
-v [--verbosity] arg (=2) Set verbosity level

0 [silent]
1 [error]
2 [warning]
3 [workflow]
4 [steps]

The abbreviated, one-letter options are preceded with one dash - whereas the longer, named options
are preceded with two dashes: --. If an option needs an argument (arg), you can include or omit the
equals sign. Adapt the command line usage to your operating system and shell.

5.2 Program Options

–r [––reaction] arg Specify the input reaction file. The file must contain the formalized reaction
either in .smirks or .rxn format. More information on how to properly formulate a reaction definition
can be found in Section 6.

–s [––sma] arg Specify a SMARTS functional group definition file. The file is only needed if atom
labels are used in .rxn files. A pre-compiled file (named FunctionalGroupLabel.txt) with common
functional groups can be found in the example folder inside the ReactionSynthesizer directory. You
may extend this file depending on your needs. See Section 6 and 5.3 for more information.

14

https://www.biosolveit.de/download/?product=spacelight
https://www.biosolveit.de/download/?product=spacelight

–i [––input] arg | Specify an input file containing building blocks suitable to be used with the reaction
given via the -r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf. The file will be
scanned for suitable building blocks for all reagents specified in the reaction file. Only suitable building
blocks will be read from the file, non-suitable ones are skipped. Please note: You can specify multiple
input files at once by using the -i option multiple times in a row, e.g.
./reaction_synthesizer -i compounds_1.sdf -i building_blocks_2.smi

––input-reagent-1 arg Input molecule files explicitly used for reagent 1. If provided, this file should
contain only building blocks which are suitable for the first reagent specified in the reaction given with
-r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-2 arg Input molecule files explicitly used for reagent 2. If provided, this file should
contain only building blocks which are suitable for the second reagent specified in the reaction given
with -r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-3 arg Input molecule files explicitly used for reagent 3. If provided, this file should
contain only building blocks which are suitable for the third reagent specified in the reaction given with
-r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

––input-reagent-4 arg Input molecule files explicitly used for reagent 4. If provided, this file should
contain only building blocks which are suitable for the fourth reagent specified in the reaction given
with -r option. Supported file types are .smi, .smiles, .mol, .mol2 and .sdf.

–p [––protecting-groups] arg Specify a file containing SMARTS definitions for protecting groups. The
file should be a simple text file containing line-separated SMARTS definitions. If you provide such a file,
the specified protecting groups present in the input building blocks will be clipped and removed from
the generated fragments. An example file (named ProtectingGroups.txt) with common protecting
groups can be found in the example folder within the SpaceLightDBCreator directory. See Section 5.3
for more information.

–o [––output-file] arg Specify the path and name of the output file. The output file is a topological
fragment space database (.tfsdb) file. The suffix (.tfsdb) is required. Please note: You can write
topology graphs from different reactions step-wise into a single database. See the example in Section
5.3.

–f [––insert-full-molecules] Insert the compounds in the input file (specified with the -i option)
as ”full molecules” directly into the database (no fragment and topology graph generation). This is
especially useful if you want to add molecules to the database which cannot be constructed from the
reactions of the space.

––include-macrocycles Allows the incorporation and formation of macrocyclic compounds in the
database, e.g. compounds containing single ringswithmore than 9 ring atoms. Macrocycles are allowed
to be part of a building block (given by -i or --input-reagent option) and can be formed as a product
of a reaction (given by -r option), i.e. if this option is set, products containing single rings with more
than 9 ring atoms can be formed via cyclization reactions.

15

––protect-space Protects the IP value in the output .tfsdb database file. Encrypts the structure and
name of molecules in the database. Please note: Adding further topologies to a protected database
(see the example in Section 5.3) always requires the --protect-space option be set.

5.3 Example: Creating a topological fragment space database

On the command-line, navigate into the example folder within the SpaceLightDBCreator directory. Here
you can find two example reaction definition files (named amidecoupling.smirks and suzuki.smirks)
and a file with suitable building blocks (building_blocks.smi). They cover two prominent examples of
reactions used in Medicinal Chemistry: amide coupling and Suzuki reaction (see Figure 2). More infor-
mation on how to properly formalize reactions for space generation can be found on our website.[2][3]
First, you can use the amide reaction to create a new database:

../spacelight_db_creator -r amidecoupling.smirks -i building_blocks.smi
-o topo_space.tfsdb

This call will create a new database file named topo_space.tfsdb within the example folder.
Next, simply add the topology graph for the Suzuki reaction to the existing database:

../spacelight_db_creator -r suzuki.smirks -i building_blocks.smi
-o topo_space.tfsdb

You can repeat this process for multiple reactions and their associated building blocks. We recommend
to automate this process using shell or python scripts. For paying customers, we have pre-compiled
workflow scripts to facilitate space generation for multiple reactions. Please get in touch with us, and
we can provide you with the scripts and assistance.

Similar to the example in Section 3.6, you can also cleave protecting groups from products:

../spacelight_db_creator -r amidecoupling.smirks -i boc_amine_and_acid.smi
-o boc_cleaved.tfsdb -p ProtectingGroups.txt

Similar to the example in Section 3.8, you can also use functional group labels in reaction definitions:

../spacelight_db_creator -r esterification_labels.rxn -i building_blocks.smi
-o ester_space.tfsdb -s FunctionalGroupLabel.txt

More information on defining reaction definitions with functional group labels can be found in Section
6.

Topological fragment space database files can be directly searched with SpaceLight (for more informa-
tion on SpaceLight visit https://www.biosolveit.de/download/?product=spacelight). You can also
put the .tfsdb file in a zip container (e.g. together with the merged ”classical” fragment space files, see
the example in Section 4.3) and use this single zip file comfortably with all modes of infiniSee and all
command line search tools.

16

https://www.biosolveit.de/download/?product=spacelight

6 Prepare Reaction Definitions for Space Generation

The ReactionSynthesizer and SpaceLightDBCreator need precise reaction definitions as input to gener-
ate spaces with meaningful chemistry. Reaction definitions in RXN or SMIRKS format are accepted. The
generation of Reaction-SMARTS/SMIRKS may be assisted by tools like the SMARTSEditor and SMARTS
PLUS webserver (https://smarts.plus/) that are able to visualize SMARTS expressions.[1]

However, the most intuitive way to generate formalized reaction definitions is to sketch a reaction with
a chemical drawing program and export it as .rxn file. In the following, MarvinSketch is used as an
example, but other sketchers (ChemDraw etc.) can be used in a comparable way. The first step is to
simply draw a reaction. It is often sufficient to draw only the functional groups that react with each
other, as illustrated for the esterification A in Figure 6. The sketched molecules are interpreted as
substructures, so esterification A will be more generic than esterification B. If you draw aromatic rings,
make sure that the bond type for all ring bonds is set to aromatic.

Figure 6: Examples of drawing an esterfication reaction. Variant A is more generic than variant B.

Let’s continue with the more generic esterification A. As a second step, you must assign mapping num-
bers for all atoms that are present on both the product and the educt side. Therefore, right-click on an
atom on the educt side, select ”Map” from the context menu and assign a number. Now, right-click on
the related atom in the product molecule and assign the same mapping number to it. It is important
that all related atoms on educt and product side have a common unique mapping number (see Figure
7)! In this example, the OH-atom in the educt acid must not get a mapping number because it is not
present in the product molecule. It will be removed during the reaction (leaving group).

Figure 7: Adding mapping numbers for every related atom pair on educt and product side.

17

https://smarts.plus/

Figure 8: Example of products and artifacts generated with an imprecise reaction definition.

At this stage, the reaction is in principle properly defined to be used with ReactionSynthesizer and
SpaceLightDBCreator. However, the reaction definition is not as precise as it should be to avoid un-
wanted products and artifacts. This should be illustrated with the building blocks in Figure 8.

Product 1 is a desired product of the esterification reaction. Product 3 is chemically invalid and products
2 and 4 were not intended to be formed with this reaction definition. It is therefore crucial to define the
chemical environment of the functional group atoms as precise as possible. This can be achieved by
using recursive SMARTS definitions. It is important that the SMARTS definitions only match exactly one
atom. This can be best illustrated for a SMARTS that precisely defines the oxygen atom of the educt
alcohol: [OD1;$(O-[#6;!$(C=[O,N,S])])]. This SMARTS matches an oxygen atom that has only one
heavy atom as neighbor (OD1) and this neighbor atom must be a carbon atom that is not allowed to
have a double bond to oxygen, sulfur or nitrogen ($(O-[#6;!$(C=[O,N,S])])).

You can assign the SMARTS to the oxygen atom of the educt alcohol as shown and described in Figure
9. This eliminates products 3 and 4. To also eliminate product 2, the carboxyl group of the educt acid
has to be defined properly. One possibility is to precisely define the environment of the central carbon
(carbonyl carbon) of the carboxyl group: [C$(C(=[OD1])([OD1])[#6,#1])]. This SMARTS pattern only
matches the carbonyl carbon of carboxylic acids, but not of esters.

Now we have generated a very precise reaction definition for an esterification between a carboxylic acid
and an alcohol. As a final step, just export the reaction as .rxn file (make sure to select MDL Rxnfile,
do not use MDL Extended Rxnfile) and specify this file with the -r option of ReactionSynthesizer and
SpaceLightDBCreator (see examples in Sections 3 and 5).

18

Figure 9: Adding SMARTS definitions to an atom to define its chemical environment with MarvinSketch. 1. Click on the
”periodic table” | 2. Got to the ”Advanced” tab. | 3. Choose ”SMARTS” as custom property type. | 4. Enter the SMARTS
definition. | 5. (not shown) Close the periodic table window and assign the SMARTS by clicking on the desired atom (in
case of our example the oxygen atom of the educt alcohol).

Alternatively to use SMARTS to properly define functional groups in reaction definitions you can also
use “labels”, which are simply pre-defined SMARTS-patterns that make the drawing more easily human-
readable. You can find pre-defined SMARTS patterns and their associated human-readable labels in the
FunctionalGroupLabel.txt file in the example folder inside the ReactionSynthesizer or SpaceLightDB-
Creator repository folder. Instead of directly assigning a SMARTS to an atom of the functional group
simply assign the corresponding label specified in the file. This can be done with Marvin Sketch in com-
parable manner (see Figure 10 and compare to Figure 9). The atom of the functional group to which
the label must be added is described in the comment column of the file. For our example, you have
to assign the label ”Alcohol” to the oxygen of the alcohol group and the label ”CarboxylicAcid” to the
central carbon (carbonyl carbon) of the carboxyl group (see Figure 11).

19

Figure 10: Adding labels to an atom with MarvinSketch. 1. Click on the ”periodic table” | 2. Got to the ”Advanced” tab.
| 3. Choose ”Value” as custom property type. | 4. Enter the label. | 5. (not shown) Close the periodic table window and
assign the label by clicking on the desired atom (in case of our example the oxygen atom of the educt alcohol).

If you use reaction definitions with labels always make sure to specify the FunctionalGroupLabel.txt
file via the -s / --sma option (see Section 3.8 and 5.3 for examples). You may even extend the label
file depending on your needs.

Figure 11: Esterification reaction with functional group labels.

20

7 General Options

This section describes the general options which are identical for all CoLibri tools.

–h [––help] Displays the command line help with short descriptions for every argument option.

––license-info Shows detailed information about the license setup you currently use. If you have
any problems with your license, send an email to mailto:support@biosolveit.com and include this
information.

––thread-count arg Specifies the maximum number of threads used by the tool. By default, all avail-
able logical cores of your computer are used. Youmaywant to reduce the number of threads if youwant
to run other computations on your computer at the same time, or if you share the compute resource.

––version Displays information on the version of the respective tool on the command line. In quoting
the tool, please mention this version number.

–v [––verbosity] arg Sets the verbosity level, e.g., the level of console output, with an integer argu-
ment. The default value is 2. The following options are available:

0 Silent. No messages will be displayed in the console during the run. Errors will be ignored when-
ever possible.

1 Error. Only error messages will be displayed.

2 Warning. The default setting, warnings and error messages will be displayed.

3 Workflow. In addition to errors and warnings, information on the different steps are displayed on
the command line.

4 Steps. In addition to the ’Workflow’ option, the progress of each step is displayed in detail.

21

mailto:support@biosolveit.com

8 Further Reading, References

Additional information about CoLibri is available at https://www.biosolveit.de/products/#CoLibri.

Complementary tools, e.g. the command line search tools FTrees, SpaceMACS and SpaceLight as well as
the Chemical Space Navigation Platform infiniSee, can be obtained from the BioSolveIT website (https:
//biosolveit.com).

References

[1] https://www.biosolveit.de/academic-drug-discovery/.

[2] https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_
implementation-of-reactions.pdf.

[3] https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.
pdf.

We wish you great success and much joy with CoLibri!

22

https://www.biosolveit.de/products/#CoLibri
https://biosolveit.com
https://biosolveit.com
https://www.biosolveit.de/academic-drug-discovery/
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2021/06/KNIME_implementation-of-reactions.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf
https://www.biosolveit.de/wp-content/uploads/2022/02/BeginnersGuide_SMARTSeditor.pdf

	Introduction
	Technical Prerequisites
	The ReactionSynthesizer
	General
	Program Options
	Example 1: Generating a single space for a reaction
	Example 2: Enumerating product molecules for a reaction
	Example 3: Transforming molecules for FastGrow databases or covalent docking
	Example 4: Removing protecting groups from product molecules
	Example 5: Debugging reaction definitions
	Example 6: Using reactions with functional group labels

	The FragspaceMerger
	General
	Program Options
	Example: Merging two single reaction spaces

	The SpaceLightDBCreator
	General
	Program Options
	Example: Creating a topological fragment space database

	Prepare Reaction Definitions for Space Generation
	General Options
	Further Reading, References

